

3804 House

Project Number: 22-112

3804 E Mercer Way Mercer Island, WA 98040

Structural Calculations

Lateral Calculations	S1 – S102
Gravity Calculations	S103 – S226

Reviewed by:

Nabil Kausal-Hayes, PE

206-601-9728

www.nkhengineering.com

Prepared By:

Allen Rishel, EIT

September 7th, 2023

١

LATERAL LOAD CALCULATIONS FOR RESIDENTIAL PROPERTY LOCATED AT 3804 Mercer Way

Basis of Design

This document is showing the detail of design and calculations of framing, foundation and shear walls, for gravity and lateral loads according to IRC 2018, NDS 2018, IBC 2018, ASCE7-16, AISC 2015 and ACI 318-14.

The load distribution		
Tha man nighthrillian		17 YHZ YYAZ
1116 10610 01611 117011011	10 CLO	

Floor Dead Load	15 psf
Roof Dead Load	15 psf
Floor Live Load	40 psf
Roof Live Load	20 psf
Roof Snow Load	25 psf
Deck Live Load	60 psf
Deck Dead Load	

The maximum wind speed is assumed 110 MPH per ASCE-7-16 with exposure category B for risk category II per King County.

Ground peak accelerations is 0.607g and seismic design category D2.

The maximum bearing pressure on soil was considered at least 1500 psf . Concrete strength is assumed to be at least 2500 psi

Material Properties for Design

 $f_c := 2500 psi$ Concrete compressive strength

 $f_{soil.bearing} \coloneqq 1500 psf \qquad \qquad \text{Minimum soil bearing capacity}$

 $\gamma_{concrete} \coloneqq 150 pcf \qquad \qquad \text{Concrete unit weight}$

 $\gamma_{steel} \coloneqq 490 pcf \hspace{1cm} \text{Steel unit weight}$

 $E_s := 29000 ksi$ Young modulus of steel

 $E_c := 57000 \cdot \sqrt{\frac{f_c}{psi}} \cdot psi = 2.85 \times 10^3 \cdot ksi$ Young modulus of concrete (ACI-318-14)

Load Assumptions

 $LL_{floor} \coloneqq 40 psf$ Floor live load

 $DL_{floor} := 15psf$ Floor dead load

 $DL_{roof} := 15psf$ Roof dead load

 $LL_{roof} := 20 psf$ Roof live load

 $SL_{roof} := 25psf$ Roof snow load

LATERAL LOAD CALCULATION Parameters (SEISMIC & WIND)

Seismic Force Calculation on Building-ASCE7-16 for Wood Frame Structure

Site Class D was considered for this project according to IBC 1613.3.2

According to USGS Data for the site the seismic parameters are according to the followings

PGA := 0.607

Peak Ground Acceleration from USGS site

 $S_{DS} := 1.134$

Design short period acceleration

 $S_S := 1.418$

Short period spectral

 $S_1 := 0.493$

Long Period Spectral

 $F_a := 1.2$

Table 11.4.1

 $F_{v} := 1.8$

Table 11.4.2

 $S_{MS} := F_a \cdot S_S = 1.702$

11-4-1

 $S_{M1} := F_v \cdot S_1 = 0.887$

11-4-2

$$S_{D1} := \frac{2}{3} \cdot S_{M1} = 0.592$$

$$T_{S} := \frac{S_{D1}}{S_{DS}} \cdot s = 0.522 \, s$$

 $h_{\text{building}} := 30 \text{ft}$

Height of building

 $W_{ext} := 12psf$

Weight of external walls

$$T_a := 0.02 \cdot \left(\frac{h_{building}}{ft}\right)^{0.75} \cdot s = 0.256 s$$

Fundamental period of structure

ASCE 7-16-12.8.7

$$T_L := 6s$$

Long period Transition

ACE 7-16- Fig 22-14

$$R := 6.5$$

Seismic Modification factor for light frame

ASCE 7-16- Table 12.2.1

Importance factor for residential building

$$\frac{T_a}{1.5 \cdot T_S} = 0.328$$

Ta is less than 1.5Ts.

Equation ASCE 716-12.8.2 should

be used

$$C_{S} := \frac{S_{DS}}{\left(\frac{R}{I}\right)} = 0.174$$

Seismic Response Factor

ASCE 7-16-12.8.1.1

$$C_{S.min} := .044S_{DS} \cdot I = 0.05$$

Cs is more than minimum-OK

$$C_{S.Design} := max(C_S, C_{S.min}) = 0.174$$

Force Distribution Along the Height

$$N_{\text{story}} := 3$$

Number of story including roof

$$i := 1..N_{story}$$

$$j := 1..N_{story}$$

$$W_1 := 2780(ft^2) \cdot DL_{floor} + W_{ext} \cdot 248ft10ft = 71.46 \cdot kip$$

Total dead weight of second floor

$$W_2 := 2250 \text{ft}^2 \cdot DL_{\text{floor}} + W_{\text{ext}} \cdot (230 \text{ft}) 12 \text{ft} = 66.87 \cdot \text{kip}$$

Total dead weight of second floor

$$W_3 := 2250 \text{ft}^2 \cdot DL_{\text{roof}} + W_{\text{ext}} \cdot 208 \text{ft} \cdot \frac{12 \text{ft}}{2} = 48.726 \cdot \text{kip}$$

Total dead weight of third floor

$$\mathsf{h}_{\mathsf{floor}_1} \coloneqq 7\mathsf{ft}$$

Height of first floor from ground

$$h_{floor_2} := h_{floor_1} + 11ft = 18 \cdot ft$$

Height of second floor from ground

$$h_{floor_3} := h_{floor_2} + 12ft = 30 \cdot ft$$

Height of second floor from ground

$$V_{base_EQ.wall} := C_{S.Design} \cdot \sum_{i=1}^{N_{story}} W_i = 32.634 \cdot kip$$

Total base shear due to seismic for all building

$$C_{v_{i}} := \frac{W_{i} \cdot h_{floor_{i}}}{\sum_{i=1}^{N_{story}} (W_{i} \cdot h_{floor_{i}})}$$

Story force distribution factor-ASCE7-16-12.8-12

$$C_{v_i} =$$

$$F_i := C_{v_i} \cdot V_{base_EQ.wall}$$

Seismic force at each floor

$$F_i =$$

·kip

$$V_{story_j} \coloneqq \sum_{i=j}^{N_{story}} F_i$$

Shear at each floor

$$V_{\text{story}_{\dot{j}}} =$$

·kip

Wind Force Calculation on Building-ASCE7-16

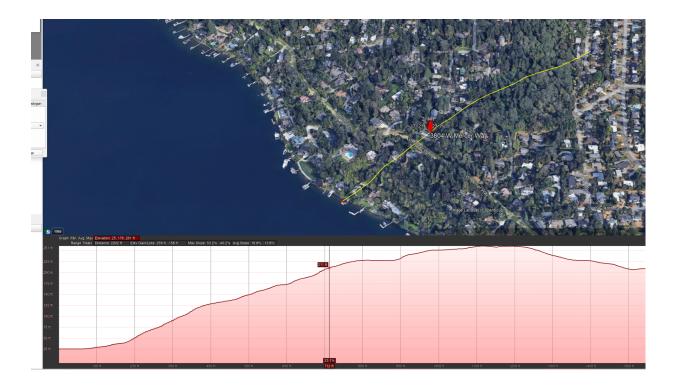
Risk category II for ASCE7-16-Table 1.5.1 I := 1

residential structure

Wind speed ASCE7-16-Fig 26.5.1B $V_{wind} := 110 \frac{mi}{hr}$

ASCE7-16-Table 26.6-1 Wind directionality factor

 $K_d := 0.85$ for buildings


Exposure Category B was considered for this design according to king County

 $L_{\text{house}} := 58 \text{ft}$

House foot print dimension

 $W_{\text{house}} := 50.5 \text{ft}$

Topographic Factor

$$H_{zt} := 260 ft - 25 ft = 235 \cdot ft$$

Height of hill from lowest

side

$$L_h := 1125 ft - 438 ft = 687 \cdot ft$$

Distance from hill to location with half of hill height

$$K_1 := 0.75 \cdot \frac{H_{zt}}{L_h} = 0.257$$

From table 26.8-1 for Exposure B

 $x := (1125ft - 708ft) = 417 \cdot ft$ Distance from crest to building

$$\mu_{upwind} := 1.5$$

From table 26.8-1

$$\mu_{downwind} := 4$$

From table 26.8-1-2D Escapement

$$\gamma := 2.5$$

2D Escapement

$$K_{2_upwind} := 1 - \frac{x}{L_h \cdot \mu_{upwind}} = 0.595$$

$$K_{2_downwind} := 1 - \frac{x}{L_h \cdot \mu_{downwind}} = 0.848$$

$$-\gamma \cdot \frac{h_{building}}{L_{h}}$$

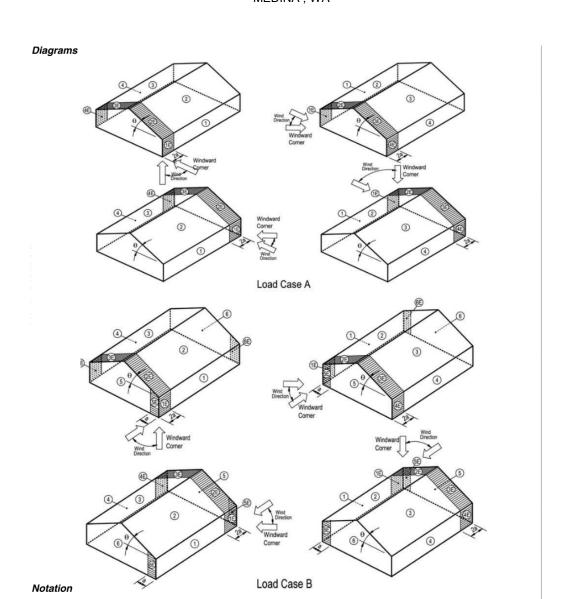
$$K_{3} := e = 0.897$$

$$K_{zt.upwind} := (1 + K_1 \cdot K_{2_upwind} \cdot K_3)^2 = 1.293$$

ASCE7-16-26.8.2

$$K_{zt.downwind} := (1 + K_1 \cdot K_{2_downwind} \cdot K_3)^2 = 1.428$$

$$K_{zt} := max(K_{zt.downwind}, K_{zt.upwind}) = 1.428$$


7 of 104

$K_e := 1.0$	Ground elevation factor	ASCE7-16-26.9			
$GC_{pi} := -0.18$	Internal Pressure Coefficient for enclosed building	ASCE7-16-Table 26.13-1			
$K_{Z} := 0.7$	Velocity pressure exposure coefficient-Assume 25 ft total height for exposure B	ASCE7-16-Table 26.10-1			
$\mathbf{q}_{\mathbf{Z}} := 0.00256 \cdot \mathbf{K}_{\mathbf{Z}} \cdot \mathbf{K}_{\mathbf{Z} \mathbf{t}} \cdot \mathbf{K}_{\mathbf{d}} \cdot \mathbf{K}_{\mathbf{d}}$	$e^{\cdot \left(\frac{V_{\text{wind}}}{\frac{\text{mi}}{\text{hr}}}\right)^2 \cdot \frac{\text{lbf}}{\text{ft}^2}} = 26.325 \cdot \text{psf}$				

$$\theta_{\text{roof}} := \operatorname{atan}\left(\frac{0}{12}\right) = 0 \cdot \deg$$

Approximate roof angle

Wind Load On building Using Envelope Procedure-Chapter 28 ASCE7-16

- a 10% of least horizontal dimension or 0.4 h, whichever is smaller, but not less than either 4% of least horizontal dimension or 3 ft (0.9 m).
- Exception: For buildings with $\theta = 0$ to 7° and a least horizontal dimension greater than 300 ft (90 m), dimension a shall be limited to a maximum of 0.8 h.
- h Mean roof height, in feet (meters), except that eave height shall be used for $\theta \le 10^{\circ}$.
- θ Angle of plane of roof from horizontal, in degrees.

$$a := \frac{max \left(min \left(0.1 \cdot min \left(L_{house}, W_{house}\right), 0.4 \cdot h_{building}\right), 0.04 \cdot min \left(L_{house}, W_{house}\right), 3 \, ft\right)}{min \left(L_{house}, W_{house}\right)} = 0.1$$

Load Case A Roof Angle θ (degrees)	Building Surface											
	1		2	3		4	16		2E	3E		4E
0–5	0.4	-0	-0.69	-0.37 -0.48 -0.43		-0.37	0.37 -0.29 0.61	61	1 -1.07		53	-0.43
20	0.5	3	-0.69			-0.43	0.8	30	-1.07	-0.6	59	-0.66
30-45	0.5	6	0.21			0.21 -0.43	13	3 -0.37	0.69	9	0.27	-0.53
90	0.5	6	0.56	-0.3	37	-0.37	0.6	9	0.69	-0.4	18	-0.4
Load Case B	Building Surface											
Roof Angle θ (degrees)	1	2	3	4	5	6	1E	2E	3E	4E	5E	6E
0–90	-0.45	-0.69	-0.37	-0.45	0.40	-0.29	-0.48	-1.07	-0.53	-0.48	0.61	-0.4

The structure is regular shape and less than 60 ft high, so chapter 28 is applicable to use

Load Case A

External pressure on wall for 10 deg roof (Conservatively assumed 20 deg)

ASCE7-16-Table 28.3-1

$$angle := \begin{pmatrix} 0 \\ 5 \\ 20 \\ 30 \\ 45 \\ 90 \end{pmatrix} deg \ wall_{p.factor.1} := \begin{pmatrix} 0.4 \\ 0.4 \\ 0.53 \\ 0.56 \\ 0.56 \\ 0.56 \\ 0.56 \end{pmatrix} \ wall_{p.factor.2} := \begin{pmatrix} -0.69 \\ -0.69 \\ -0.69 \\ 0.21 \\ 0.56 \end{pmatrix} \ wall_{p.factor.3} := \begin{pmatrix} -0.37 \\ -0.37 \\ -0.48 \\ -0.43 \\ -0.43 \\ -0.37 \end{pmatrix}$$

$$vall_{p.factor.4} := \begin{pmatrix} -0.29 \\ -0.29 \\ -0.43 \\ -0.37 \\ 0.37 \end{pmatrix} \ wall_{p.factor.1E} := \begin{pmatrix} 0.61 \\ 0.61 \\ 0.8 \\ 0.69 \\ 0.69 \\ 0.69 \end{pmatrix} \ wall_{p.factor.2E} := \begin{pmatrix} -1.07 \\ -1.07 \\ -1.07 \\ 0.27 \end{pmatrix}$$

$$wall_{p.factor.3E} := \begin{pmatrix} -0.53 \\ -0.53 \\ -0.69 \\ -0.53 \\ -0.53 \\ -0.48 \end{pmatrix} \qquad wall_{p.factor.4E} := \begin{pmatrix} -0.43 \\ -0.43 \\ -0.64 \\ -0.48 \\ -0.48 \\ -0.48 \end{pmatrix}$$

$$wall_{factor.A.1}(\theta) := linterp(angle, wall_{p.factor.1}, \theta)$$

$$\text{wall}_{factor.A.2}(\theta) := \text{linterp}(\text{angle}, \text{wall}_{p.factor.2}, \theta)$$

$$wall_{factor.A.3}(\theta) := linterp(angle, wall_{p,factor.3}, \theta)$$

$$\mathrm{wall}_{factor.A.4}(\theta) \coloneqq \mathrm{linterp} \big(\mathrm{angle}, \mathrm{wall}_{p.factor.4}, \theta \big)$$

$$\mathrm{wall}_{factor.A.1E}(\theta) \coloneqq \mathrm{linterp}\big(\mathrm{angle}, \mathrm{wall}_{p.factor.1E}, \theta\big)$$

$$wall_{factor.A.2E}(\theta) := linterp(angle, wall_{p.factor.2E}, \theta)$$

$$wall_{factor,A,3E}(\theta) := linterp(angle, wall_{p,factor,3E}, \theta)$$

$$\text{wall}_{factor.A.4E}(\theta) := \text{linterp}(\text{angle}, \text{wall}_{p.factor.4E}, \theta)$$

Weighted averaging along length

Wall pressure

$$GC_{p \text{ wall windward.A}} := a \cdot \text{wall}_{factor.A.1E}(\theta_{roof}) + (1 - a) \cdot \text{wall}_{factor.A.1}(\theta_{roof}) = 0.421$$

$$GC_{p_wall_leeward.A} := \left. a \cdot wall_{factor.A.4E} \! \left(\theta_{roof} \right) + (1-a) \cdot wall_{factor.A.3} \! \left(\theta_{roof} \right) = -0.376$$

External pressure for roof

ASCE7-16-Table 28.3-1

$$GC_{p \text{ roof windward.A}} := a \cdot \text{wall}_{factor.A.2E}(\theta_{roof}) + (1 - a) \cdot \text{wall}_{factor.A.2}(\theta_{roof}) = -0.728$$

$$GC_{p_roof_leeward.A} := \left. a \cdot wall_{factor.A.3E} \! \left(\theta_{roof} \right) + (1-a) \cdot wall_{factor.A.3} \! \left(\theta_{roof} \right) = -0.386 \right.$$

Wind pressure for Case A ASCE7-16-28-3-1

$$\begin{split} &p_{wind_wall_windward.A} \coloneqq q_{Z} \cdot \left(GC_{p_wall_windward.A} + if \left(GC_{p_wall_windward.A} > 0, -GC_{pi}, GC_{pi}\right)\right) = 15.821 \cdot psf \\ &p_{wind_wall_leeward.A} \coloneqq q_{Z} \cdot \left(GC_{p_wall_leeward.A} + if \left(GC_{p_wall_leeward.A} > 0, -GC_{pi}, GC_{pi}\right)\right) = -14.636 \cdot psf \\ &p_{wind_roof_windward.A} \coloneqq q_{Z} \cdot \left(GC_{p_roof_windward.A} + if \left(GC_{p_roof_windward.A} > 0, -GC_{pi}, GC_{pi}\right)\right) = -23.903 \cdot psf \\ &p_{wind_roof_leeward.A} \coloneqq q_{Z} \cdot \left(GC_{p_roof_leeward.A} + if \left(GC_{p_roof_leeward.A} > 0, -GC_{pi}, GC_{pi}\right)\right) = -14.9 \cdot psf \end{split}$$

Load Case B

$$GC_{p_wall_windward.B} := a \cdot 0.61 + (1 - a) \cdot 0.4 = 0.421$$

ASCE7-16-Table 28.3-1

Project Location: 7657 14TH ST MEDINA, WA

 $GC_{p_wall_leeward.B} := -a \cdot 0.43 + -(1 - a) \cdot 0.29 = -0.304$

 $GC_{p_wall_windward.B_orthogonal} := a \cdot -0.48 + (1 - a) \cdot -0.45 = -0.453$

ASCE7-16-Table 28.3-1

Designer: NKH Engineering

 $GC_{p_wall_leeward.B_orthogonal} := a \cdot -0.48 + (1 - a) \cdot -0.45 = -0.453$

External pressure for roof ASCE7-16-Table 28.3-1

 $\mathrm{GC}_{p_roof_windward.B} \coloneqq a \cdot -1.07 + (1-a) \cdot -0.69 = -0.728 \qquad \text{Windward pressure for roof}$

 $GC_{\begin{subarray}{c} p_roof_leeward.B \end{subarray}} := -a \cdot 0.53 - (1-a) \cdot .37 = -0.386 \qquad \qquad \text{Leeward pressure for roof}$

Wind pressure ASCE7-16-28-3-1

 $p_{\text{wind wall windward.B}} := q_z \cdot \text{if} \left(GC_p \text{ wall windward.B} > 0, -GC_{pi}, GC_{pi} \right) = 4.738 \cdot \text{psf}$

 $p_{wind_wall_leeward.B} := q_z \cdot if \left(GC_{p_wall_leeward.B} > 0, -GC_{pi}, GC_{pi}\right) = -4.738 \cdot psf$

$$\begin{array}{l} p_{wind_wall_windward.B_orthogonal} := q_{Z} \cdot \begin{pmatrix} GC_{p_wall_windward.B_orthogonal} & \cdots \\ + if \left(GC_{p_wall_windward.B_orthogonal} > 0, -GC_{pi}, GC_{pi} \end{pmatrix} \\ \end{array} \\ = -16.663 \cdot p_{Q} \cdot p$$

$$\begin{aligned} & p_{wind_wall_leeward.B_orthogonal} := q_z \cdot \begin{pmatrix} GC_{p_wall_leeward.B_orthogonal} & \cdots \\ & + if \left(GC_{p_wall_leeward.B_orthogonal} > 0, -GC_{pi}, GC_{pi} \right) \end{aligned} \\ & = -16.663 \cdot psf \end{aligned}$$

$$\begin{aligned} p_{\text{wind_roof_windward.B}} &:= q_{\text{z}} \cdot \begin{pmatrix} \text{GC}_{\text{p_roof_windward.B}} & \cdots \\ &+ \text{if} \left(\text{GC}_{\text{p_roof_windward.B}} > 0, -\text{GC}_{\text{pi}}, \text{GC}_{\text{pi}} \right) \end{aligned} \\ &= -23.903 \cdot \text{psf}$$

 $p_{wind_roof_leeward.B} := q_z \cdot \left(GC_{p_roof_leeward.B} + if\left(GC_{p_roof_leeward.B} > 0, -GC_{pi}, GC_{pi}\right)\right) = -14.9 \cdot psf$

Lateral Calculation Book Project Location: 7657 14TH ST Designer: NKH Engineering MEDINA , WA

ASD load combination used for frame design:


- D+S
- D+ 0.6W
- D+0.7E
- D+0.75x0.6W+0.75L+0.75S
- D+0.75 x 0.7 E+0.75L+0.75S
- 0.6 D+0.6W
- 0.6D+0.7E

LRFD load combination for concrete design:

- 1.4D
- -1.2D+1.6S
- 1.2D+1.6S+0.5W
- 1.2D+1.0W+0.5S
- 1.2D+1.0E+0.2S
- 0.9D+1.0W
- -0.9D+1.0E

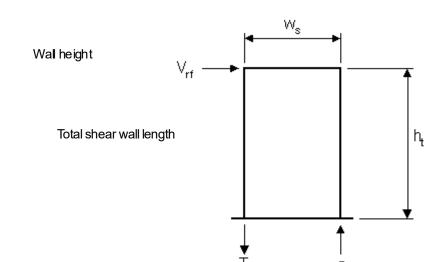
Shear Wall Design for Lateral Load in East-West Direction per NDS-SDPWS2015

First Floor-Shear wall

$$V_{EQ} := V_{story_1} \cdot \frac{750 ft^2}{2780 ft^2} = 8.804 \cdot kip$$

Tributary shear on the wall per plan dimensions

$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 17.5 \text{ ft} \cdot h_{floor_3} = 15.99 \cdot \text{kip}$$


Wind load

 $L_s := 24 ft$

Project Location: 7657 14TH ST

MEDINA, WA

Designer: NKH Engineering

First Segment:

$$h_t := 9 \cdot ft$$

 $w_s := 24ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 0.375$$
 check_{ratio} := if $\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right)$

$$(WSP) := if \left(\frac{h_t}{w_S} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_S}\right) \text{ Aspect ratio factor }$$

(WSP) = 1.0

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$

Wind shear load at top of wall

$$V_{rf.w} = 9.59 \cdot kip$$

$$V_{rf.E} := \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right)$$

Seismic shear load at top of wall (ASD)

$$V_{rf.E} = 6.16 \cdot kip$$

$$\mathsf{M}_{\text{ot.w}} \coloneqq \mathsf{V}_{\text{rf.w}} \cdot \mathsf{h}_{\mathsf{t}}$$

Overturning moment (ASD)

 $M_{ot.w} = 86.3 \cdot \text{kip} \cdot \text{ft}$

$$M_{\text{ot.E}} := V_{\text{rf.E}} \cdot h_t$$

Overturning moment (ASD)

 $M_{\text{ot.E}} = 55.5 \cdot \text{kip} \cdot \text{ft}$

Resisting Forces

$$P_{rf} := 0 = 0 \cdot lbf$$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$

Wall self weight load

$$P_w = 2.592 \cdot kip$$

$$M_{res} \coloneqq \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \text{ Resisting moment (ASD)}$$

 $M_{res} = 18.662 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1

sides

 $\Omega_s := 2.0$

(ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$

Overstrength factor

$$\mathbf{w}_{\mathbf{V}.\mathbf{W}} := \frac{\mathbf{V}_{\mathbf{rf}.\mathbf{W}}}{\mathbf{w}_{\mathbf{S}}} = 400 \cdot \mathbf{plf}$$

Wind shear flow

$$w_{v.E} \coloneqq \frac{V_{rf.E}}{w_{_{S}}} = 257 \cdot plf \qquad \qquad \text{Seismic shear flow}$$

$$\mathbf{w_{all.w}} \coloneqq \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.4} \cdot n}}{\Omega_{s}} = 490 \cdot \mathbf{plf} \text{ check}_{wv} \coloneqq if \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

 $\frac{w_{v.w}}{w_{all.w}} = 0.816$ check_{wv} = "OK"

 $\mathbf{w}_{all.E} := \frac{(\text{WSP}) \cdot \mathbf{v}_{s.7_16.8d.4} \cdot \mathbf{n}}{\Omega_{s}} = 350 \cdot \text{plf} \qquad \text{check}_{wE} := \text{if} \left(\frac{\mathbf{w}_{v.E}}{\mathbf{w}_{all.E}} > 1.0, \text{"NG"}, \text{"OK"}\right)$

 $check_{wE} = "OK"$

Single Sided 7/16" sheathing w/ 8d @ 4" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Project Location: 7657 14TH ST MEDINA, WA

Sill Plate Anchorage $C_{D} := 1.6$

 $t_{sp} := 1.5in$

Sill plate thickness $\frac{\text{dia}_a := 0.5\text{in}}{\text{dia}_a := 0.5\text{in}}$ Anchor Diameter $\frac{\text{sp}_a := 24\text{in}}{\text{sp}_a := 24\text{in}}$ Anchor spacing

Designer: NKH Engineering

 $Z_{ll} := v_{A.625} v_{2x} \cdot C_D = 1.488 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq \max \! \left(w_{v.w}, w_{v.E} \cdot \Omega_o \right) \cdot sp_a = 1.284 \cdot kip \; \; \text{Shear load to each anchor}$

Check_a := if(
$$V_{sp} > Z_{ll}$$
, "NG", "OK") ratio_a := $\frac{V_{sp}}{Z_{ll}} = 0.863$

$$ratio_a := \frac{V_{sp}}{Z_{11}} = 0.863$$

 $Check_a = "OK"$

Use 5/8" Dia. Anchor at 24o.c. (7" min. embed)

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 5 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{a11} := HDU5 = 5.645 \cdot kip$

Allowable tension load

$$check_{HD} := if \left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \qquad ratio := \frac{T}{T_{all}} = 0.886$$

$$check_{HD} = "OK"$$

$$ratio := \frac{T}{T_{all}} = 0.886$$

It is less than 5% above-EOR is OK

$$d_b := \begin{bmatrix} \frac{5}{8} \text{ in } & \text{if } T_{all} = \text{HDU4} \lor T_{all} = \text{HDU5} \\ \frac{7}{8} \text{ in } & \text{if } T_{all} = \text{HDU8} \\ 1 \text{ in } & \text{otherwise} \end{bmatrix}$$
Bolt diameter

$$d_b = 0.625 \cdot in$$

$$A_b := \frac{\pi}{4} \cdot (d_b)^2 = 0.307 \cdot in^2$$

Area of bolt including thread

$$F_y := 36ksi$$

Nominal strength of bolt-F1554

$$\Omega := 1.67$$

ASD factor

$$T_{a.capacity} := \frac{A_b \cdot F_y}{\Omega} = 6.614 \cdot kip$$

$$Check_{anchor} := \left(if\left(\frac{T}{T_{a.capacity}} \le 1, "OK", "NG"\right)\right) \qquad \frac{T}{T_{a.capacity}} = 0.756$$

$$Check_{anchor} = "OK"$$

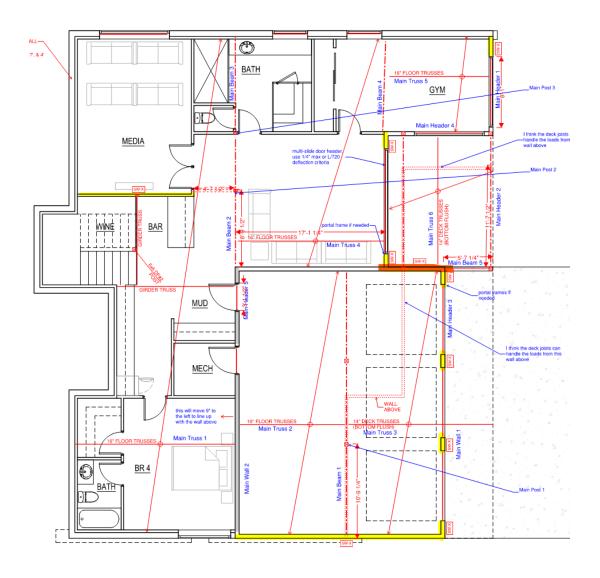
$$\frac{T}{T_{a \text{ capacity}}} = 0.756$$

18 of 104

Footing Uplift

$$L_{ftg} := 24ft$$
 Length of footing $t_{slab} := 0$ in Slab thickness

$$W_{ftg} := 16in$$
 Width of footing $trib_{slab} := 0ft$ Slab tributary


$$\frac{\text{trib}_{flr} := 0}{\text{trib}_{flr}} = \frac{18\text{in}}{\text{trib}_{stem}} = \frac{18\text{in}}{\text{trib}_{stem}}$$
 Stem wall height

$$\begin{aligned} \text{wt}_{resist} \coloneqq & \left[\left(W_{ftg} \cdot t_{ftg} + t_{slab} \cdot trib_{slab} + t_{stem} \cdot ht_{stem} \right) \cdot L_{ftg} \cdot 150 \text{pcf} + \left(P_{rf} + P_{w} \right) \dots \right] = 9.492 \cdot \text{kip} \\ & + \left(\frac{W_{ftg} - t_{stem}}{2} \right) \cdot ht_{stem} \cdot L_{ftg} \cdot 120 \text{pcf} \end{aligned}$$

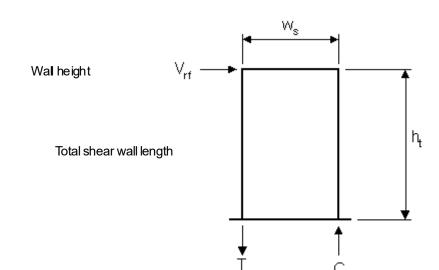
$$e_{\text{ftg}} := \frac{M_{\text{ot.w}}}{wt_{\text{resist}}} = 9.097 \cdot \text{ft}$$

$$\operatorname{check}_{\operatorname{ftg}} := \operatorname{if} \left(\operatorname{e}_{\operatorname{ftg}} \le \frac{\operatorname{L}_{\operatorname{ftg}}}{2}, \text{"OK"}, \text{"NG-Axial Load is Outside of Footing"} \right)$$
 $\operatorname{check}_{\operatorname{ftg}} = \text{"OK"}$

Use 1'-4"W x 8"D footing w/ (3) #4 Long., #4 @ 10" o.c. Trans

$$V_{EQ} := V_{story_1} \cdot \frac{900 \text{ft}^2}{2780 \text{ft}^2} = 10.565 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions


$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 19 \text{ft} \cdot h_{floor_3} = 17.361 \cdot \text{kip}$$

Wind load

Project Location: 7657 14TH ST

MEDINA, WA

Designer: NKH Engineering

First Segment:

$$h_t := 9 \cdot ft$$

 $L_s := 7 ft$

$$w_s := 7ft$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.286 \qquad check_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, "NG", "OK"\right)$$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$

$$V_{rf.w} = 10.42 \cdot kip$$

$$V_{rf.E} := \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right)$$

$$V_{rf.E} = 7.4 \cdot kip$$

$$\mathsf{M}_{\mathrm{ot.w}} \coloneqq \mathsf{V}_{\mathrm{rf.w}} \cdot \mathsf{h}_{\mathrm{t}}$$

$$M_{ot.w} = 93.7 \cdot kip \cdot ft$$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$

$$M_{ot.E} = 66.6 \cdot \text{kip} \cdot \text{ft}$$

Resisting Forces

$$P_{rf} := \left(DL_{floor}\right) \cdot \left(\frac{15ft}{2}\right) \cdot w_s + 5626lbf = 6.413 \times 10^3 \cdot lbf$$

Total gravity load on wall

Designer: NKH Engineering

$$P_{rf} = 6.413 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$

Wall self weight load

$$P_w = 0.756 \cdot kip$$

$$\mathbf{M}_{res} \coloneqq \left[\left(\mathbf{P}_{rf} + \mathbf{P}_{w} \right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 \text{ Resisting moment (ASD)}$$

 $M_{res} = 15.056 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2

sides

 $\Omega_{\rm c} := 2.0$

(ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$

Overstrength factor

$$\mathbf{w}_{\mathbf{V.W}} := \frac{\mathbf{V_{rf.w}}}{\mathbf{w_{s}}} = 1488 \cdot \mathbf{plf}$$

Wind shear flow

$$w_{v.E} := \frac{V_{rf.E}}{w_c} = 1056 \cdot plf$$

Seismic shear flow

$$\mathbf{w_{all.w}} \coloneqq \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.2^{\cdot n}}}}{\Omega_{\mathbf{S}}} = 1640 \cdot \mathbf{pl} \text{ check}_{\mathbf{WV}} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG", "OK"}\right)$$

$$\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} = 0.907$$

$$\frac{\mathbf{check_{wv}} = \text{"OK"}}{\mathbf{w_{all.w}}}$$

$$w_{all.E} := \frac{(WSP) \cdot v_{s.7_16.8d.2} \cdot n}{\Omega} = 1170 \cdot plf$$

$$\mathbf{w_{all.E}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{s.7_16.8d.2} \cdot n}}{\Omega_{s}} = 1170 \cdot \text{plf} \qquad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{v.E}}{w_{all.E}} = 0.903$$

 $check_{wE} = "OK"$

Double Sided 7/16" sheathing w/ 8d @ 2" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Sill Plate Anchorage

 ${\sf t_{sp}} := 1.5 {\sf in}$ Sill plate thickness ${\sf dia}_a := 0.5 {\sf in}$ Anchor Diameter ${\sf sp}_a := 7 {\sf in}$ Anchor spacing

 $Z_{II} := v_{A.625} v_{2x} \cdot C_D = 1.488 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq \max \! \left(w_{v.w}, w_{v.E} \cdot \Omega_o \right) \cdot sp_a = 1.541 \cdot kip \; \; \text{Shear load to each anchor}$

Check_a := if(
$$V_{sp} > Z_{ll}$$
, "NG", "OK") ratio_a := $\frac{V_{sp}}{Z_{ll}} = 1.035$

$$ratio_a := \frac{V_{sp}}{Z_{11}} = 1.035$$

Check_a = "NG"

Use 5/8" Dia. Anchor at 24"o.c. (7" min. embed)

It is less than 5% above-EOR is OK

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 21.62 \cdot \text{kip}$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{all} := 2HDU14 = 21.54 \cdot kip$

Allowable tension load

$$check_{HD} := if \left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$
 ratio $:= \frac{T}{T_{all}} = 1.004$

$$ratio := \frac{T}{T_{all}} = 1.004$$

 $check_{HD} = "NG"$

It is less than 5% above-EOR is OK

 $d_b := \left| \frac{5}{8} \text{in if } T_{all} = HDU4 \lor T_{all} = HDU5 \right|$ Bolt diameter

$$\frac{7}{8}$$
 in if $T_{all} = HDU8$

1 in otherwise

 $d_{\mathbf{h}} = 1 \cdot i\mathbf{n}$

$$A_b := \frac{\pi}{4} \cdot (d_b)^2 = 0.785 \cdot in^2$$

Area of bolt including thread

 $F_v := 36ksi$

Nominal strength of bolt-F1554

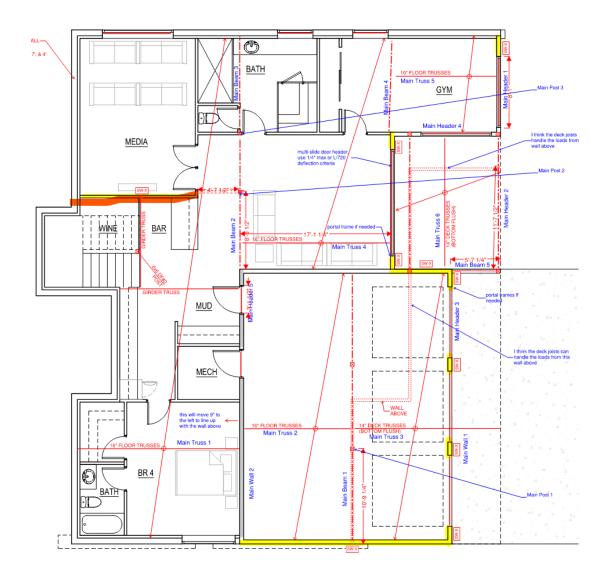
 $\Omega := 1.67$

ASD factor

$$T_{a.capacity} := \frac{A_b \cdot F_y}{\Omega} = 16.931 \cdot kip$$

$$Check_{anchor} := \left(if\left(\frac{\frac{T}{2}}{T_{a.capacity}} \le 1, "OK", "NG"\right)\right) \quad \frac{\frac{T}{2}}{T_{a.capacity}} = 0.638$$

$$Check_{anchor} = "OK"$$


Footing Uplift

$$\begin{split} & L_{ftg} \coloneqq 12 \text{ft} & \text{Length of footing} & t_{slab} \coloneqq 4 \text{in} & \text{Slab thickness} \\ & W_{ftg} \coloneqq 18 \text{in} & \text{Width of footing} & \text{trib}_{slab} \coloneqq 18 \text{ft} & \text{Slab tributary} \\ & t_{ftg} \coloneqq 6 \text{in} & \text{Thickness of footing} & t_{stem} \coloneqq 6 \text{in} & \text{Stem wall thick} \\ & \text{trib}_{flr} \coloneqq 0 & \text{Floor/deck tributary} & \text{ht}_{stem} \coloneqq 18 \text{in} & \text{Stem wall height} \\ & \text{wt}_{resist} \coloneqq \left[\left(W_{ftg} \cdot t_{ftg} + t_{slab} \cdot \text{trib}_{slab} + t_{stem} \cdot \text{ht}_{stem} \right) \cdot L_{ftg} \cdot 150 \text{pcf} + \left(P_{rf} + P_w \right) \dots \right] = 21.75 \cdot \text{kip} \\ & + \left(\frac{W_{ftg} - t_{stem}}{2} \right) \cdot \text{ht}_{stem} \cdot L_{ftg} \cdot 120 \text{pcf} \end{split}$$

$$& e_{ftg} \coloneqq \frac{M_{ot.w}}{wt_{resist}} = 4.31 \cdot \text{ft} \\ & \text{check}_{ftg} \coloneqq \text{if} \left(e_{ftg} \le \frac{L_{ftg}}{2}, \text{"OK"}, \text{"NG-Axial Load is Outside of Footing"} \right) & \text{check}_{ftg} \equiv \text{"OK"} \end{split}$$

Use 1'-4"W x 8"D footing w/ (3) #4 Long., #4 @ 10" o.c. Trans

24 of 104

Designer: NKH Engineering

$$V_{EQ} := V_{story_1} \cdot \frac{1000 \text{ft}^2}{2780 \text{ft}^2} = 11.739 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 22 \text{ft} \cdot h_{floor_3} = 20.102 \cdot \text{kip}$$

Wind load

Project Location: 7657 14TH ST

MEDINA, WA

Wall height

Vrf

Total shear wall length

 $L_s := 13.5 ft$

First Segment:

$$h_t := 9 \cdot ft$$

$$w_s := 13.5 ft$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 0.667 \qquad \qquad \text{check}_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"} \right)$$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

Designer: NKH Engineering

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$

Wind shear load at top of wall (ASD)

$$V_{rf.w} = 12.06 \cdot kip$$

$$V_{rf.E} := \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right)$$

Seismic shear load at top of wall (ASD)

$$V_{rf.E} = 8.22 \cdot kip$$

$$\mathsf{M}_{\mathrm{ot.w}} \coloneqq \mathsf{V}_{\mathrm{rf.w}} \cdot \mathsf{h}_{\mathrm{t}}$$

Overturning moment (ASD)

$$M_{ot.w} = 108.6 \cdot kip \cdot ft$$

$$\mathsf{M}_{ot.E} \coloneqq \mathsf{V}_{rf.E} \cdot \mathsf{h}_t$$

Overturning moment (ASD)

$$M_{ot.E} = 74 \cdot \text{kip} \cdot \text{ft}$$

Resisting Forces

$$P_{rf} := 0 = 0 \cdot lbf$$

Total gravity load on wall

Designer: NKH Engineering

$$P_{rf} = 0 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$

Wall self weight load

$$P_w = 1.458 \cdot kip$$

$$M_{res} \coloneqq \left[\left(P_{rf} \, + \, P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \ \ \, \text{Resisting moment (ASD)}$$

 $M_{res} = 5.905 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2

sides

 $\Omega_{\rm c} := 2.0$

(ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$

Overstrength factor

$$w_{V.W} := \frac{V_{rf.W}}{w_s} = 893 \cdot plf$$

Wind shear flow

$$w_{v.E} := \frac{V_{rf.E}}{w_c} = 609 \cdot plf$$

Seismic shear flow

$$\mathbf{w_{all.w}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{w.7_16.8d.4^{\cdot n}}}}{\Omega_{\text{S}}} = 980 \cdot \text{plf} \text{ check}_{\text{WV}} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG", "OK"}\right)$$

 $\frac{w_{v.w}}{w_{all.w}} = 0.912$ check_{wv} = "OK"

$$\mathbf{w_{all.E}} \coloneqq \frac{\text{(WSP)} \cdot \mathbf{v_{s.7_16.8d.4}} \cdot \mathbf{n}}{\Omega_{s}} = 700 \cdot \text{plf} \qquad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$check_{wE} := if \left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK" \right)$$

 $\frac{w_{v.E}}{w_{all.E}} = 0.87$

 $check_{wE} = "OK"$

Double Sided 7/16" sheathing w/ 8d @ 4" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Sill Plate Anchorage $C_D = 1.6$

$$C_D = 1.6$$

 $\frac{1}{100} = 1.5 \text{ in}$ Sill plate thickness $\frac{1}{100} = \frac{1.5 \text{ in}}{100} = 1.5 \text{ in}$ Anchor Diameter $\frac{1.5 \text{ in}}{100} = 1.5 \text{ in}$ Anchor Spacing

 $Z_{ll} := v_{A.625} \cdot 2x \cdot C_D = 1.488 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq \max \left(w_{v.w}, w_{v.E} \cdot \Omega_o \right) \cdot sp_a = 1.522 \cdot kip \ \, \text{Shear load to each anchor}$

$$Check_a := if(V_{sp} > Z_{ll}, "NG", "OK") \qquad ratio_a := \frac{V_{sp}}{Z_{ll}} = 1.023$$

$$ratio_a := \frac{V_{sp}}{Z_{11}} = 1.023$$

Check_a = "NG"

Use 5/8" Dia. Anchor at 12"o.c. (7" min. embed)

It is less than 5% above-EOR is OK

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 13.258 \cdot \text{kip}$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{a11} := 2HDU8 = 13.53 \cdot kip$

Allowable tension load

$$check_{HD} := if \left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \qquad ratio := \frac{T}{T_{all}} = 0.98$$

$$check_{HD} = "OK"$$

$$ratio := \frac{T}{T_{all}} = 0.98$$

$$check_{HD} = "OK"$$

$$d_b := \begin{bmatrix} \frac{5}{8} \text{in if } T_{all} = \text{HDU4} \lor T_{all} = \text{HDU5} \\ \\ \frac{7}{8} \text{in if } T_{all} = \text{HDU8} \end{bmatrix}$$
 Bolt diameter

 $d_{\mathbf{h}} = 1 \cdot i\mathbf{n}$

$$A_b := \frac{\pi}{4} \cdot (d_b)^2 = 0.785 \cdot in^2$$

Area of bolt including thread

$$F_{v} := 36ksi$$

Nominal strength of bolt-F1554

$$\Omega := 1.67$$

ASD factor

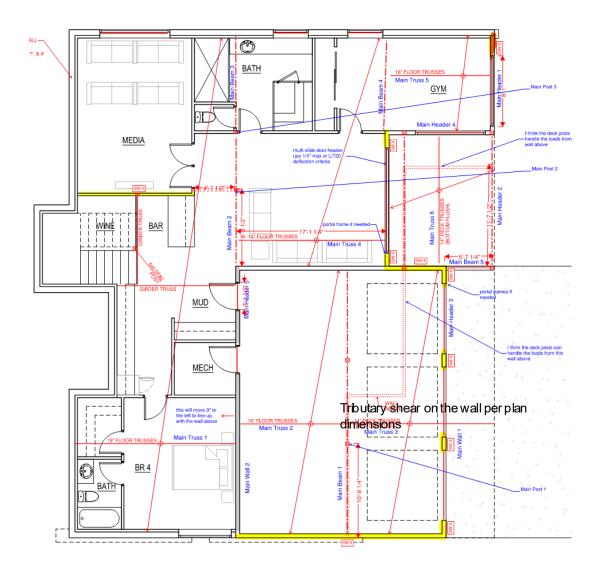
$$T_{a.capacitv} := \frac{A_b \cdot F_y}{C} = 16.931 \cdot \text{kip}$$

$$Check_{anchor} := \left(if \left(\frac{\frac{T}{2}}{T_{a.capacity}} \le 1, \text{"OK" ,"NG"}\right)\right) \quad \frac{\frac{T}{2}}{T_{a.capacity}} = 0.392$$

$$Check_{anchor} = \text{"OK"}$$

28 of 104

Footing Uplift


$$\begin{split} & L_{ftg} \coloneqq 13.5 ft \\ & W_{ftg} \coloneqq 18 in \\ & W_{ftg} \coloneqq 18 in \\ & W_{ftg} \coloneqq 6 in \\ & Thickness of footing \\ & t_{stab} \coloneqq 18 ft \\ & t_{stab} \coloneqq 18 ft \\ & t_{stab} \coloneqq 6 in \\ & t_{stem} \coloneqq 18 in \\ & t_{stem} \coloneqq 17.86 \cdot kip \\ & t_{stem} \coloneqq 17.86 \cdot kip \\ & t_{stem} \coloneqq 17.86 \cdot kip \\ & t_{stem} \coloneqq 18 in \\ & t_{stem} \coloneqq$$

Use 1'-4"W x 8"D footing w/ (3) #4 Long., #4 @ 10" o.c. Trans

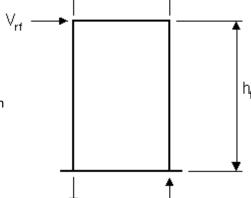
Shear Wall Design for Lateral Load in North-South Direction per NDS-SDPWS2015

Firs Floor-Shear wall

As the retaining wall at west side is high up, it is assumed that the base shear for half of building (west side) will be taken by concrete walls for shear in norht-south direction and below would be wood frame wall designed for other half in east side.

$$V_{EQ} := V_{story_1} \cdot \frac{177 \text{ ft}^2}{2780 \text{ ft}^2} = 2.078 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions


 $V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 4 \text{ft} \cdot \left(h_{floor_3}\right) = 3.655 \cdot \text{kip}$

Wind load

 $L_S := 2ft + 4in$

Wall height

Total shear wall length

First Segment:

$$w_s := (3ft + 8in)$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 2.455$$

$$check_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, "NG", "OK" \right)$$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 0.9$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$

Wind shear load at top of wall

$$V_{rf.w} = 3.45 \cdot kip$$

$$V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) \qquad \text{ Seismic shear load at top of wall (ASD)}$$

$$V_{rf.E} = 2.29 \cdot kip$$

$$\begin{split} &M_{ot.w} \coloneqq V_{rf.w} \cdot h_t & \text{Overturning moment (ASD)} & &M_{ot.w} = 31 \cdot \text{kip} \cdot \text{ft} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} & &M_{ot.E} = 20.6 \cdot \text{kip} \cdot \text{ft} \end{split}$$

Resisting Forces

$$P_{rf} := \left(DL_{floor}\right) \cdot \left(\frac{12ft}{2}\right) \cdot w_{s}$$

Total gravity load on wall

$$P_{rf} = 0.33 \cdot kip$$

$$\begin{aligned} & P_{w} \coloneqq W_{ext} \cdot \left(h_{t}\right) \cdot \left(w_{s}\right) & \text{Wall self weight load} & P_{w} = 0.396 \cdot \text{kip} \\ & M_{res} \coloneqq \left[\left(P_{rf} + P_{w}\right) \cdot \frac{w_{s}}{2}\right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} = 0.799 \cdot \text{kip} \cdot \text{ft} \end{aligned}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2sides (ASD shear capacity factor ref. section 4.3.3) $\Omega_{\rm s} := 2.0$ $\Omega_0 := 2.5$ Overstrength factor $\mathbf{w}_{\mathbf{V}.\mathbf{W}} := \frac{\mathbf{V}_{\mathbf{rf}.\mathbf{W}}}{\mathbf{W}} = 940 \cdot \mathbf{plf}$ Wind shear flow

 $w_{v.E} := \frac{V_{rf.E}}{w_{o}} = 623 \cdot plf$ Seismic shear flow

$$\mathbf{w_{all.w}} \coloneqq \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.4^{\cdot n}}}}{\Omega_{s}} = 924.3 \cdot \mathbf{plf} \text{ check}_{\mathbf{WV}} \coloneqq if \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG", "OK"}\right)$$

 $\frac{w_{V.W}}{w_{all.w}} = 1.017$ check_{wv} = "NG"

It is less than 5%

above-EOR is OK $\mathbf{w}_{\text{all.E}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{\text{s.7_16.8d.4} \cdot \text{n}}}{\Omega_{\text{s}}} = 660.2 \cdot \text{plf} \quad \text{check}_{\text{wE}} \coloneqq \text{if} \left(\frac{\mathbf{w}_{\text{v.E}}}{\mathbf{w}_{\text{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$

 $\frac{w_{v.E}}{w_{all E}} = 0.944$

 $check_{wE} = "OK"$

Double Sided 7/16" sheathing w/ 8d @ 4" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Sill Plate Anchorage $C_D := 1.6$

 $\frac{t_{sp} := 1.5in}{t_{sp}}$ Sill plate thickness $\frac{dia_a := 0.5in}{dia_a := 0.5in}$ Anchor Diameter $\frac{sp_a := 12in}{t_{sp}}$ Anchor spacing

 $Z_{ll} := v_{A.625} \cdot 2x \cdot C_D = 1.488 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq \max \! \left(w_{v.w}, w_{v.E} \cdot \Omega_o \right) \cdot sp_a = 1.558 \cdot kip \; \; \text{Shear load to each anchor}$

Check_a := if(
$$V_{sp} > Z_{ll}$$
, "NG", "OK") ratio_a := $\frac{V_{sp}}{Z_{ll}} = 1.047$

$$ratio_a := \frac{V_{sp}}{Z_{11}} = 1.047$$

Check_a = "NG"

Use 5/8" Dia. Anchor at 30"o.c. (7" min. embed)

It is less than 5% above-EOR is OK

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 13.807 \cdot \text{kip}$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{a11} := 2HDU8 = 13.53 \cdot kip$

Allowable tension load

$$check_{HD} := if \left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$
 ratio $:= \frac{T}{T_{all}} = 1.02$

$$ratio := \frac{T}{T_{all}} = 1.02$$

It is less than 5% above-EOR is OK

$$d_b := \begin{bmatrix} \frac{5}{8} & \text{in if } T_{all} = \text{HDU4} \lor T_{all} = \text{HDU5} \\ \frac{7}{8} & \text{in if } T_{all} = \text{HDU8} \\ 1 & \text{in otherwise} \end{bmatrix}$$
Bolt diameter

$$d_b = 1 \cdot in$$

$$A_b := \frac{\pi}{4} \cdot (d_b)^2 = 0.785 \cdot in^2$$

Area of bolt including thread

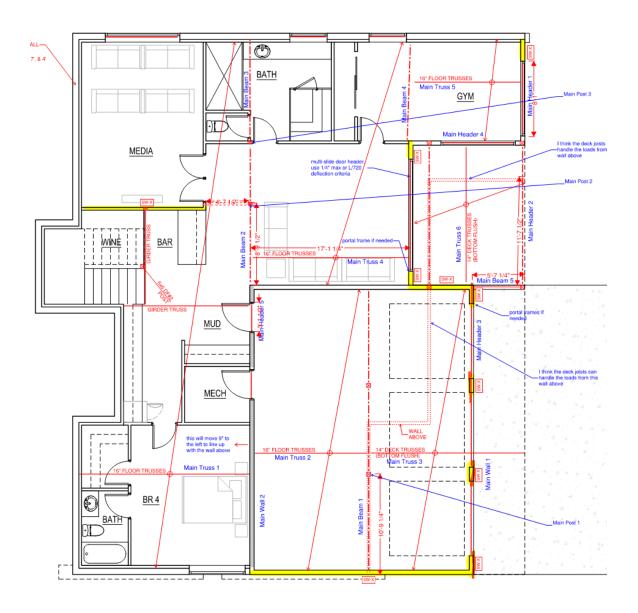
$$F_v := 36ksi$$

Nominal strength of bolt-F1554

$$\Omega := 1.67$$

ASD factor

$$T_{a.capacity} := \frac{A_b \cdot F_y}{\Omega} = 16.931 \cdot \text{kip}$$


33 of 104

$$Check_{anchor} := \left(if\left(\frac{T}{T_{a.capacity}} \le 1, "OK", "NG"\right)\right) \quad \frac{T}{T_{a.capacity}} = 0.816$$

$$Check_{anchor} = "OK"$$

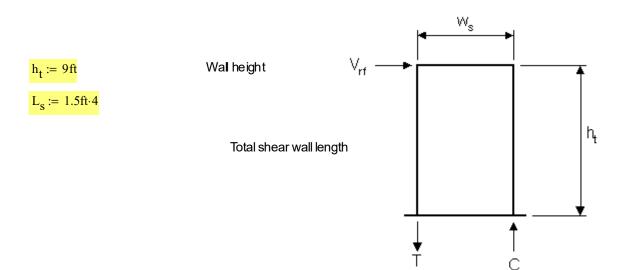
Footing Uplift

$$\begin{split} &L_{ftg} \coloneqq 12 ft & Length of footing & t_{slab} \coloneqq 4 in \\ &W_{ftg} \coloneqq 16 in & Width of footing & trib_{slab} \coloneqq 27 ft \\ &t_{ftg} \coloneqq 6 in & Thickness of footing & t_{stem} \coloneqq 6 in \\ &trib_{flr} \coloneqq 0 & Floor/deck tributary & ht_{stem} \coloneqq 18 in \\ &wt_{resist} \coloneqq \left[\left(W_{ftg} \cdot t_{ftg} + t_{slab} \cdot trib_{slab} + t_{stem} \cdot ht_{stem} \right) \cdot L_{ftg} \cdot 150 pcf + \left(P_{rf} + P_w \right) \dots \right] = 20.376 \cdot kip \\ &+ \left(\frac{W_{ftg} - t_{stem}}{2} \right) \cdot ht_{stem} \cdot L_{ftg} \cdot 120 pcf \end{split}$$

$$&e_{ftg} \coloneqq \frac{M_{ot.w}}{wt_{resist}} = 1.522 \cdot ft \\ ✓_{ftg} \coloneqq if \left(e_{ftg} \le \frac{L_{ftg}}{2} , \text{"OK"}, \text{"NG-Axial Load is Outside of Footing"} \right) \quad \text{check}_{ftg} \equiv \text{"OK"} \end{split}$$

$$V_{EQ} := V_{story_1} \cdot \frac{250 \text{ft}^2}{2780 \text{ft}^2} = 2.935 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions


$$V_{wind} := (p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}) \cdot 6ft \cdot (h_{floor_3}) = 5.482 \cdot kip$$

Wind load

Project Location: 7657 14TH ST

MEDINA, WA

Designer: NKH Engineering

First Segment:

$$w_s := 1.5 ft$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 6$$

$$check_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, "NG", "OK" \right)$$

these segments will be designed as portal frame

$$(WSP) := if \left(\frac{h_t}{w_S} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_S}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 0.5$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$

Wind shear load at top of wall

$$V_{rf.w} = 0.82 \cdot kip$$

$$V_{rf.E} := \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right)$$

Seismic shear load at top of wall (ASD)

$$V_{rf.E} = 0.51 \cdot kip$$

$$\mathsf{M}_{\mathrm{ot.w}} \coloneqq \mathsf{V}_{\mathrm{rf.w}} \cdot \mathsf{h}_{\mathsf{t}}$$

Overturning moment (ASD)

 $M_{ot.w} = 7.4 \cdot \text{kip} \cdot \text{ft}$

$$\mathsf{M}_{ot.E} \coloneqq \mathsf{V}_{rf.E} \cdot \mathsf{h}_t$$

Overturning moment (ASD)

 $M_{\text{ot.E}} = 4.6 \cdot \text{kip} \cdot \text{ft}$

36 of 104

Resisting Forces

$$P_{rf} := \left(DL_{floor}\right) \cdot \left(\frac{12ft}{2}\right) \cdot w_{s}$$

Total gravity load on wall

$$P_{rf} = 0.135 \cdot kip$$

Designer: NKH Engineering

$$P_w := W_{ext} \cdot (h_t) \cdot (w_s)$$

Wall self weight load

$$P_w = 0.162 \cdot kip$$

$$\mathbf{M}_{res} \coloneqq \left[\left(\mathbf{P}_{rf} \, + \, \mathbf{P}_{w} \right) \! \cdot \! \frac{\mathbf{w}_{s}}{2} \right] \! \cdot \! 0.6 \; \; \text{Resisting moment (ASD)}$$

$$M_{res} = 0.134 \cdot kip \cdot ft$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$n := 2$$

sides

$$\Omega_{\rm s} := 2.0$$

(ASD shear capacity factor ref. section 4.3.3)

$$\Omega_0 := 2.5$$

Overstrength factor

$$w_{v.w} := \frac{V_{rf.w}}{w_s} = 548 \cdot plf$$

Wind shear flow

$$w_{v.E} := \frac{V_{rf.E}}{w_c} = 342 \cdot plf$$

Seismic shear flow

$$\mathbf{w_{all.w}} := \frac{(\text{WSP}) \cdot \mathbf{v_{w.7_16.8d.3}} \cdot \mathbf{n}}{\Omega_{s}} = 630 \cdot \text{plf} \quad \text{check}_{wv} := \text{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{V.W}}{w_{all.w}} = 0.87$$
 check_{wv} = "OK"

$$\frac{w_{all.E} := \frac{(WSP) \cdot v_{s.7_16.8d.3} \cdot n}{\Omega_s} = 450 \cdot plf \text{ check}_{wE} := if \left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$$

$$\frac{w_{v.E}}{w_{all.E}} = 0.761$$

 $check_{wE} = "OK"$

Double Sided 7/16" sheathing w/ 8d @ 3" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Sill Plate Anchorage

$$C_{D} = 1.6$$

 $\frac{t_{sp} := 1.5in}{t_{sp}}$ Sill plate thickness $\frac{dia_a := 0.5in}{dia_a := 0.5in}$ Anchor Diameter $\frac{sp_a := 20in}{t_{sp}}$ Anchor spacing

 $Z_{11} := v_{A.625} \cdot v_{A.625} \cdot v_{D} = 1.488 \cdot kip$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq \max \! \left(w_{v.w}, w_{v.E} \cdot \Omega_o \right) \cdot sp_a = 1.427 \cdot kip \; \; \text{Shear load to each anchor}$

Check_a := if(
$$V_{sp} > Z_{ll}$$
, "NG", "OK") ratio_a := $\frac{V_{sp}}{Z_{ll}} = 0.959$

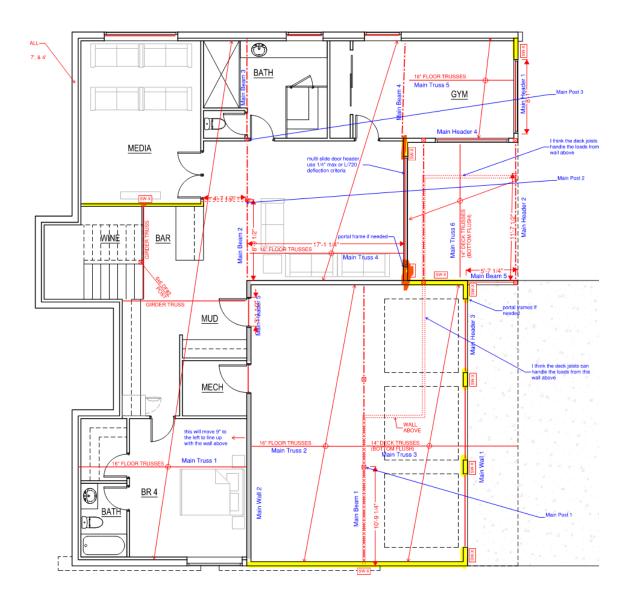
$$ratio_a := \frac{V_{sp}}{Z_{11}} = 0.959$$

 $Check_a = "OK"$

Use 5/8" Dia. Anchor at 24"o.c. (7" min. embed)

Check Portal Frame Loads

$$L_{portal} := 9ft + 8in$$


$$M_{base} := \frac{max \left[\left(\frac{V_{EQ}}{3} \right) \cdot 0.7 \cdot \Omega_{o}, \frac{V_{wind}}{3} \cdot 0.6 \right] \cdot h_{t}}{4} = 3.852 \cdot kip \cdot ft$$

Bending moment at the base of portal frame (there are 3 portal frame)

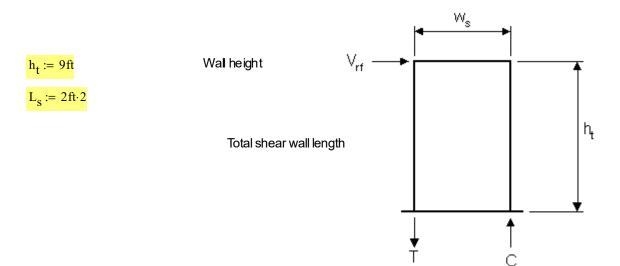
$$T_{holdown} := \frac{M_{base}}{w_{s}} \dots = 2.93 \cdot kip$$

$$+ \frac{-DL_{floor} \cdot L_{portal} \cdot \frac{12ft}{2}}{2} + \frac{max \left[\left(\frac{V_{EQ}}{3} \right) \cdot 0.7 \cdot \Omega_{o}, \frac{V_{wind}}{3} \cdot 0.6 \right] \cdot h_{t} - 2 \cdot M_{base}}{L_{portal}}$$

Use HDU 4-SDS 2.5 either side

$$V_{EQ} := V_{story_1} \cdot \frac{850 \text{ft}^2}{2780 \text{ft}^2} = 9.978 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions


$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 14 \text{ft} \cdot \left(h_{floor_3}\right) = 12.792 \cdot \text{kip}$$

Wind load

Designer: NKH Engineering

Project Location: 7657 14TH ST

Designer: NKH Engineering MEDINA, WA

First Segment:

$$w_s := 2ft$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 4.5 \qquad \qquad \text{check}_{ratio} \coloneqq \text{if} \left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"} \right)$$

these segments will be simpson strong wall

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 0.7$$

Overturning Forces

$$V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) \qquad \text{Wind shear load at top of wall} \tag{ASD}$$

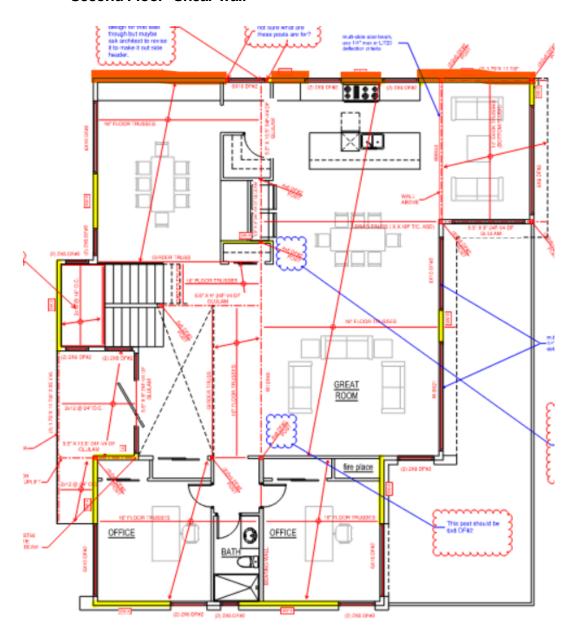
$$V_{rf.w} = 3.84 \cdot kip$$

$$V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) \qquad \text{Seismic shear load at top of wall (ASD)}$$

$$V_{rf.E} = 3.49 \cdot kip$$

$$\mathsf{M}_{\mathrm{ot.w}} \coloneqq \mathsf{V}_{\mathrm{rf.w}} \cdot \mathsf{h}_{\mathsf{t}}$$

$$M_{ot.w} = 34.5 \cdot \text{kip} \cdot \text{ft}$$


$$\mathsf{M}_{ot.E} \coloneqq \mathsf{V}_{rf.E} \cdot \mathsf{h}_t$$

$$M_{ot.E} = 31.4 \cdot \text{kip} \cdot \text{ft}$$

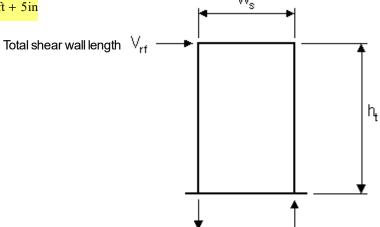
Use simpson-tie strong wall WSH 24x9

Shear Wall Design for Lateral Load in East-West Direction per NDS-SDPWS2015

Second Floor- Shear wall

$$V_{EQ} := V_{story_2} \cdot \frac{488 \text{ft}^2}{2250 \text{ft}^2} = 5.96 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions


$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 12 \\ \text{ft} \cdot \left(h_{floor_3} - h_{floor_1}\right) = 8.406 \cdot \\ \text{kip}$$

Wind load

 $h_t := 10 \cdot ft$

Wall height

 $L_S := (4ft + 4in) \cdot 2 + 12ft + 5in + 14ft + 5in$

First Segment:

$$W_S := 4ft + 4in$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 2.308$$

$$check_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, "NG", "OK" \right)$$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) \qquad \text{Wind shear load at top of wall} \tag{ASD}$$

$$V_{rf.w} = 0.62 \cdot kip$$

$$V_{rf,E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) \qquad \text{ Seismic shear load at top of wall (ASD)}$$

$$V_{rf.E} = 0.51 \cdot kip$$

$$M_{ot.w} := V_{rf.w} \cdot h_t$$

Overturning moment (ASD)

$$M_{ot.w} = 6.2 \cdot \text{kip} \cdot \text{ft}$$

Designer: NKH Engineering

$$M_{ot.E} := V_{rf.E} \cdot h_t$$

Overturning moment (ASD)

 $M_{ot.E} = 5.1 \cdot \text{kip} \cdot \text{ft}$

Resisting Forces

$$P_{rf} := 0 = 0 \cdot lbf$$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$

Wall self weight load

$$P_w = 0.52 \cdot kip$$

$$\mathbf{M}_{res} \coloneqq \left[\left(\mathbf{P}_{rf} + \mathbf{P}_{w} \right) \! \cdot \! \frac{\mathbf{w}_{s}}{2} \right] \! \cdot \! 0.6 \; \; \text{Resisting moment (ASD)}$$

 $M_{res} = 0.676 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$n := 1$$

sides

$$\Omega_{\rm S} := 2.0$$

(ASD shear capacity factor ref. section 4.3.3)

$$\Omega_0 := 2.5$$

Overstrength factor

$$\mathbf{w}_{\mathbf{v.w}} \coloneqq \frac{\mathbf{V_{rf.w}}}{\mathbf{w_{s}}} = 142 \cdot \mathsf{plf}$$

Wind shear flow

$$w_{v.E} \coloneqq \frac{v_{rf.E}}{w_{_{S}}} = 118 \cdot plf \hspace{1cm} \text{Seismic shear flow}$$

$$\mathbf{w_{all.w}} \coloneqq \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.6^{\cdot n}}}}{\Omega_{\mathbf{S}}} = 322.1 \cdot \mathbf{plf} \qquad \mathbf{check_{wv}} \coloneqq \mathbf{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG", "OK"} \right)$$

 $\frac{w_{v.w}}{w_{all.w}} = 0.441$ check_{wv} = "OK"

$$w_{all.E} := \frac{(WSP) \cdot v_{s.7} 16.8d.6^{\cdot n}}{\Omega_{s}} = 230.8 \cdot pli$$

 $\mathbf{w_{all.E}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{s.7_16.8d.6}} \cdot \mathbf{n}}{\Omega_{s}} = 230.8 \cdot \text{plf} \quad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$

$$\frac{w_{v.E}}{w_{all.E}} = 0.509$$

 $check_{wE} = "OK"$

43 of 104

Single Sided 7/16" sheathing w/ 8d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

 $t_{sp} := 1.5 in$ Sill plate thickness $dia_a := 16d$ Nail Size $sp_a := 8 in$ Nail spacing

 $Z_{11} := v_n \cdot C_D = 0.226 \cdot \text{kip}$

Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} := w_{v,w} \cdot sp_a = 0.095 \cdot kip$ Shear load to each nail

 $\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "NG", "OK"\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 0.42$

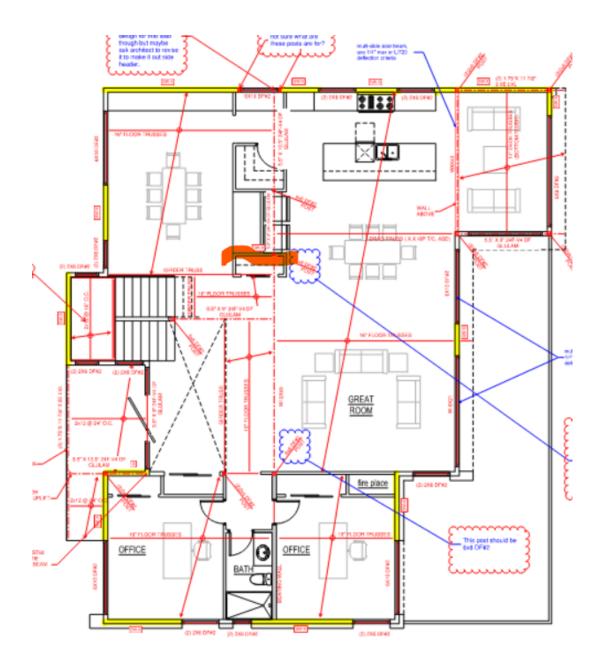
 $Check_a = "OK"$

Use 16d Nail at 8"o.c. Staggered

Holdown

$$T := \frac{\max\left(M_{ot.w}, M_{ot.E} \cdot \Omega_o\right) - M_{res}}{w_s} = 2.782 \cdot \text{kip}$$

 $\mathsf{check}_T \coloneqq \mathsf{if}(\mathsf{T} > 150\mathsf{lbf}\,, \mathsf{"HD}\,\mathsf{REQ'D"}\,, \mathsf{"NOT}\,\mathsf{REQ'D"}) \quad \mathsf{check}_T = \mathsf{"HD}\,\mathsf{REQ'D"}$


 $T_{all} := MST37 = 2.705 \cdot kip$

Allowable tension load

$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, \text{"NG"}, \text{"OK"}\right) \qquad \operatorname{ratio} := \frac{T}{T_{all}} = 1.028 \qquad \qquad \operatorname{check}_{HD} = \text{"NG"}$$

ratio :=
$$\frac{T}{T_{a11}} = 1.028$$

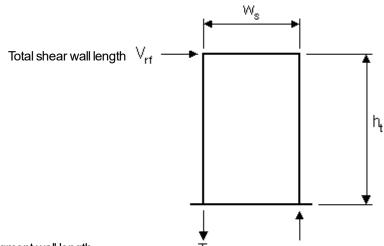
It is less than 5% above-EOR is OK

$$V_{EQ} := V_{story_2} \cdot \frac{840 ft^2}{2250 ft^2} = 10.258 \cdot kip$$

Tributary shear on the wall per plan dimensions

$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 20 \\ \text{ft} \cdot \left(h_{floor_3} - h_{floor_1}\right) = 14.01 \cdot \\ \text{kip} = 14.01 \cdot \\ \text{$$

Wind load


Project Location: 7657 14TH ST MEDINA, WA

Designer: NKH Engineering

 $h_t := 10 \cdot ft$

 $L_s := 5ft + 10in$

Wall height

First Segment:

 $w_s := 5ft + 10in$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_c} = 1.714$$

$$check_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, "NG", "OK" \right)$$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$

Wind shear load at top of wall (ASD)

$$V_{rf.w} = 8.41 \cdot kip$$

$$V_{rf.E} := \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right)$$

Seismic shear load at top of

$$V_{rf.E} = 7.18 \cdot kip$$

$$\mathsf{M}_{\text{ot.w}} \coloneqq \mathsf{V}_{\text{rf.w}} \cdot \mathsf{h}_{\mathsf{t}}$$

Overturning moment (ASD)

$$M_{ot.w} = 84.1 \cdot \text{kip} \cdot \text{ft}$$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$

Overturning moment (ASD)

$$M_{ot.E} = 71.8 \cdot \text{kip} \cdot \text{ft}$$

Resisting Forces

$$P_{rf} := 5000lbf = 5 \times 10^3 \cdot lbf$$

Total gravity load on wall from forte

$$P_{rf} = 5 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$

Wall self weight load

$$P_w = 0.7 \cdot kip$$

$$\mathbf{M}_{res} \coloneqq \left[\left(\mathbf{P}_{rf} \, + \, \mathbf{P}_{w} \right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 \ \ \, \text{Resisting moment (ASD)}$$

 $M_{res} = 9.975 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$n := 2$$

sides

$$\Omega_{\rm s} := 2.0$$

(ASD shear capacity factor ref. section 4.3.3)

$$\Omega_0 := 2.5$$

Overstrength factor

$$\mathbf{w}_{\mathbf{v}.\mathbf{w}} := \frac{\mathbf{V}_{\mathbf{rf}.\mathbf{w}}}{\mathbf{w}_{\mathbf{S}}} = 1441 \cdot \mathbf{plf}$$

Wind shear flow

$$w_{v.E} := \frac{V_{rf.E}}{w_s} = 1231 \cdot plf$$

Seismic shear flow

$$\mathbf{w_{all.w}} := \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.2} \cdot n}}{\Omega_{\mathbf{S}}} = 1640 \cdot \mathbf{plf} \qquad \mathbf{check_{wv}} := \mathbf{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG", "OK"} \right)$$

 $\frac{w_{v.w}}{w_{all.w}} = 0.879$ check_{wv} = "OK"

$$\frac{\text{w.w}}{\text{wall.w}} = 0.87$$

$$\mathbf{w}_{\text{all.E}} := \frac{(\text{WSP}) \cdot \mathbf{v}_{\text{s.7}} - 16.8 \text{d.2} \cdot \mathbf{n}}{\Omega_{\text{s}}} = 1170 \cdot \text{plf} \qquad \text{check}_{\text{wE}} := \text{if} \left(\frac{\mathbf{w}_{\text{v.E}}}{\mathbf{w}_{\text{all.E}}} > 1.0, \text{"NG"}, \text{"OK"} \right)$$

$$\frac{w_{v.E}}{w_{all.E}} = 1.05$$

 $check_{wE} = "NG"$

It is less than 5% above-EOR is OK

double Sided 7/16" sheathing w/ 8d @ 2" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing

 $C_{D} := 1.6$

 $t_{sp} := 1.5in$ Sill plate thickness

dia_a := 16d Nail Size

 $sp_a := 1.5in$ Nail spacing

 $Z_{ll} := v_n \cdot C_D = 0.226 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq w_{v.w} \cdot sp_a = 0.18 \cdot kip \hspace{1cm} \text{Shear load to each nail}$

 $\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "NG", "OK"\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 0.798$

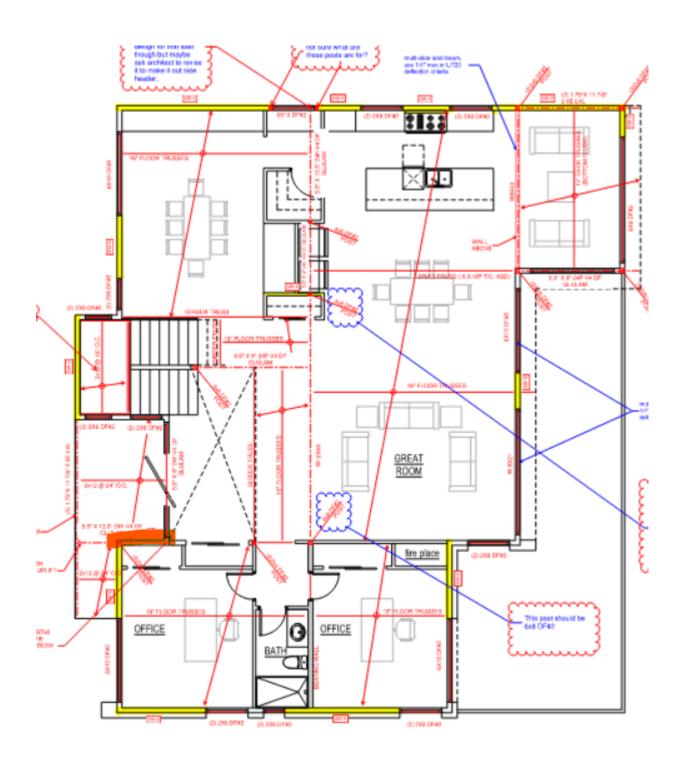
 $Check_a = "OK"$

Use 16d Nail at 8"o.c. Staggered

Holdown

$$T := \frac{\max\left(M_{ot.w}, M_{ot.E} \cdot \Omega_o\right) - M_{res}}{w_s} = 29.065 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

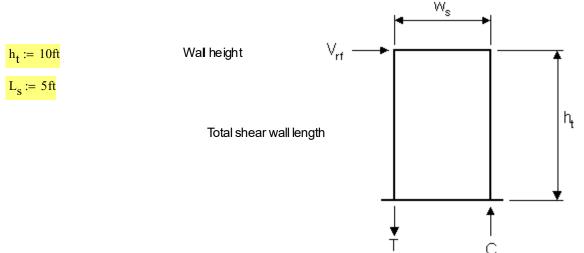

T_{all} := 3CMST12_38 = 27.645 kip Allowable tension load

$$check_{HD} := if \left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$
 ratio $:= \frac{T}{T_{all}} = 1.05$

$$ratio := \frac{T}{T_{all}} = 1.05$$

 $check_{HD} = "NG"$

It is less than 5% above-EOR is OK


Project Location: 7657 14TH ST Designer: NKH Engineering MEDINA, WA

$$V_{EQ} := V_{story_2} \cdot \frac{483 \, \text{ft}^2}{2250 \, \text{ft}^2} = 5.898 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

 $V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 17 \text{ft} \cdot \left(h_{floor_3} - h_{floor_1}\right) = 11.909 \cdot \text{kip}$

Wind load

First Segment:

$$w_s := 5ft$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 2 \qquad \qquad \text{check}_{ratio} \coloneqq \text{if} \left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"} \right) \qquad \qquad \text{check}_{ratio} \equiv \text{"OK"}$$

$$(\text{WSP}) \coloneqq \text{if} \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s} \right) \quad \text{Aspect ratio factor} \qquad (\text{WSP}) = 1.0$$

Overturning Forces

$$\begin{split} V_{rf.w} &\coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) &\quad \text{Wind shear load at top of wall} \\ V_{rf.E} &\coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) &\quad \text{Seismic shear load at top of} \\ v_{rf.E} &\coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) &\quad \text{Seismic shear load at top of} \\ v_{rf.E} &\coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) &\quad \text{Seismic shear load at top of} \\ v_{rf.E} &\coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) &\quad \text{Seismic shear load} \end{aligned}$$

50 of 104

MEDINA, WA

$$M_{ot.w} := V_{rf.w} \cdot h_t$$
 Overturning moment (ASD) $M_{ot.w} = 71.5 \cdot kip \cdot ft$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$
 Overturning moment (ASD) $M_{ot.E} = 41.3 \cdot kip \cdot ft$

Resisting Forces

 $rac{ extsf{P}_{ ext{rf}} \coloneqq 0}{ extsf{Total gravity load on wall}}$

 $P_{rf} = 0 \cdot kip$

$$P_w := W_{ext} \cdot (h_t) \cdot (w_s)$$
 Wall self weight load $P_w = 0.6 \cdot kip$

$$M_{res} := \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6$$
 Resisting moment (ASD) $M_{res} = 0.9 \cdot \text{kip} \cdot \text{ft}$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$n := 2$$
 sides

$$\Omega_{\rm S} := 2.0$$
 (ASD shear capacity factor ref. section 4.3.3)

$$\Omega_{o} := 2.5$$
 Overstrength factor

$$w_{v.w} := \frac{V_{rf.w}}{w_s} = 1429 \cdot plf$$
 Wind shear flow

$$w_{v.E} \coloneqq \frac{V_{rf.E}}{w_{s}} = 826 \cdot plf$$
 Seismic shear flow

$$\mathbf{w_{all.w}} \coloneqq \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.2}}^{\cdot n}}{\Omega_{s}} = 1640 \cdot \mathbf{pl} \text{ check}_{wv} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{V.W}}{w_{all.w}} = 0.871$$
 check_{wv} = "OK"

$$\mathbf{w}_{all.E} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{s.7_16.8d.2} \cdot \mathbf{n}}{\Omega_{s}} = 1170 \cdot \text{plf} \qquad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w}_{v.E}}{\mathbf{w}_{o.11 \cdot E}} > 1.0, \text{"NG"}, \text{"OK"} \right) \\ \frac{\mathbf{w}_{v.E}}{\mathbf{w}_{all.E}} = 0.706 \qquad \qquad \text{check}_{wE} = \text{"OK"}$$

Double Sided 7/16" sheathing w/ 8d @ 2<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

 $t_{sp} := 1.5 \text{in}$ Sill plate thickness $\frac{\text{dia}_a}{\text{dia}_a} := 16 \text{d}$ Nail Size

 $sp_a := 1.5in$ Nail spacing

 $Z_{ll} := v_n \cdot C_D = 0.226 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

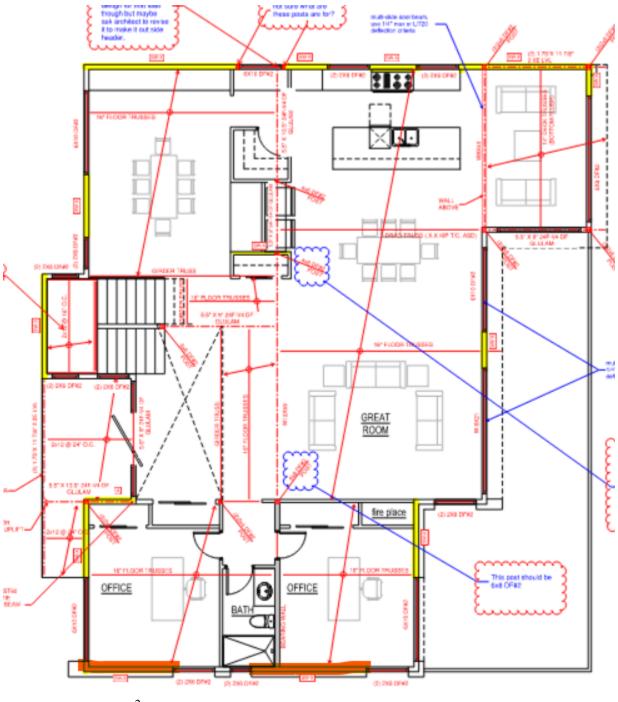
 $V_{sp} \coloneqq w_{v.w} \cdot sp_a = 0.179 \cdot kip \hspace{1cm} \text{Shear load to each nail}$

$$\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{11}, "\operatorname{NG"}, "\operatorname{OK"}\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{11}} = 0.792$$

$$ratio_a := \frac{V_{sp}}{Z_{11}} = 0.792$$

 $Check_a = "OK"$

Use 16d Nail at 5"o.c. Staggered


Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 20.465 \cdot \text{kip}$$

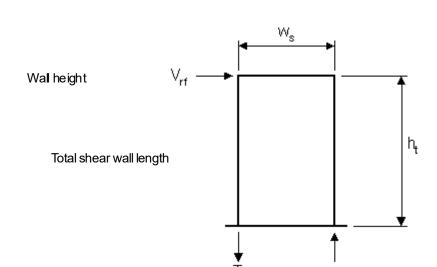
 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

T_{all} := 3CMST12_38 = 27.645 kip Allowable tension load

$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, \text{"NG"}, \text{"OK"}\right) \qquad \operatorname{ratio} := \frac{T}{T_{all}} = 0.74 \qquad \qquad \operatorname{check}_{HD} = \text{"OK"}$$

$$V_{EQ} := V_{story_2} \cdot \frac{281 \text{ft}^2}{2250 \text{ft}^2} = 3.432 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions


$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 9 \, \text{ft} \cdot \left(h_{floor_3} - h_{floor_1}\right) = 6.305 \cdot \text{kip}$$
 Wind load

 $h_t := 10ft$

 $L_S := 8.5 \text{ft} + 11 \text{ft}$

Project Location: 7657 14TH ST

MEDINA, WA

First Segment:

 $w_{s} := 8.5 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.176$$
 check_{ratio} := if $\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right)$

Designer: NKH Engineering

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

(WSP) = 1.0

Overturning Forces

$$V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) \qquad \text{Wind shear load at top of wall} \\ \text{(ASD)}$$

$$V_{rf.w} = 1.65 \cdot kip$$

$$V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) \qquad \text{Seismic shear load at top of wall (ASD)}$$

$$V_{rf.E} = 1.05 \cdot kip$$

$$\label{eq:motion_of_motion} \mathbf{M}_{ot.w} \coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t \qquad \qquad \text{Overturning moment (ASD)}$$

$$M_{ot.w} = 16.5 \cdot \text{kip} \cdot \text{ft}$$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$

$$M_{ot.E} = 10.5 \cdot \text{kip} \cdot \text{ft}$$

Resisting Forces

$$P_{rf} := 0 = 0 \cdot lbf$$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

Designer: NKH Engineering

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$

Wall self weight load

$$P_w = 1.02 \cdot kip$$

$$\mathbf{M}_{res} \coloneqq \left[\left(\mathbf{P}_{rf} \, + \, \mathbf{P}_{w} \right) \! \cdot \! \frac{\mathbf{w}_{s}}{2} \right] \! \cdot \! 0.6 \; \; \text{Resisting moment (ASD)}$$

 $M_{res} = 2.601 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1

sides

 $\Omega_s := 2.0$

(ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$

Overstrength factor

$$w_{v.w} := \frac{V_{rf.w}}{w_c} = 194 \cdot plf$$

Wind shear flow

$$w_{v.E} \coloneqq \frac{v_{rf.E}}{w_{s}} = 123 \cdot plf \hspace{1cm} \text{Seismic shear flow}$$

$$\mathbf{w_{all.w}} \coloneqq \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.6^{\cdot n}}}}{\Omega_{\mathbf{S}}} = 335 \cdot \mathbf{plf} \text{ check}_{\mathbf{WV}} \coloneqq \text{ if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG", "OK"}\right)$$

 $\frac{w_{v.w}}{w_{all.w}} = 0.579$ check_{wv} = "OK"

$$w_{all.E} := \frac{(WSP) \cdot v_{s.7_16.8d.6} \cdot n}{\Omega_s} = 240 \cdot pl$$

$$\mathbf{w_{all.E}} := \frac{(\text{WSP}) \cdot \mathbf{v_{s.7_16.8d.6}} \cdot \mathbf{n}}{\Omega_{s}} = 240 \cdot \text{plf} \qquad \text{check}_{wE} := \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

 $\frac{w_{v.E}}{w_{all.E}} = 0.513$

Single Sided 7/16" sheathing w/ 8d @ 2<u>" O.C.</u> Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_{D} = 1.6$

t_{sp} := 1.5in Sill plate thickness dia_a := 16d Nail Size

 $sp_a := 8in$

Nail spacing

Designer: NKH Engineering

 $Z_{ll} := v_n \cdot C_D = 0.226 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} := w_{v.w} \cdot sp_a = 0.129 \cdot kip$ Shear load to each nail

$$Check_a := if(V_{sp} > Z_{ll}, "NG", "OK") \qquad ratio_a := \frac{V_{sp}}{Z_{ll}} = 0.573$$

 $Check_a = "OK"$

Use 16d Nail at 8"o.c. Staggered

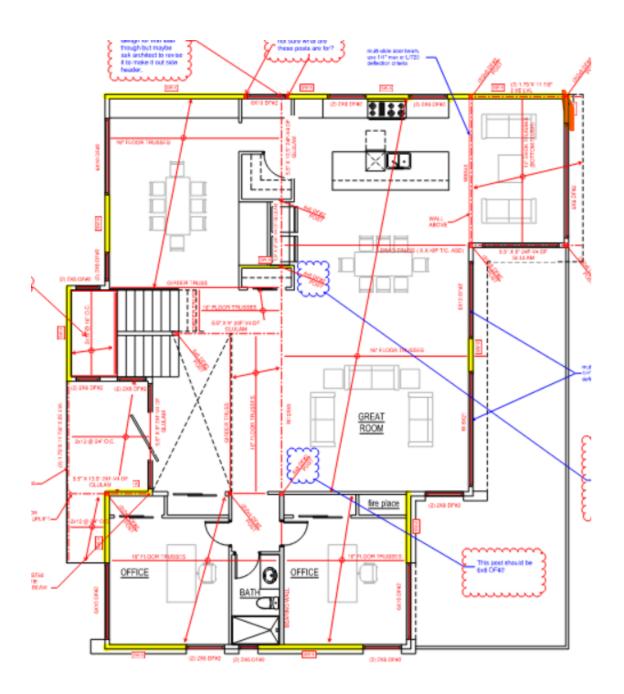
Holdown

$$T := \frac{\max\left(M_{ot.w}, M_{ot.E} \cdot \Omega_o\right) - M_{res}}{w_s} = 2.774 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{all} := MST37 = 2.705 \cdot kip$

Allowable tension load

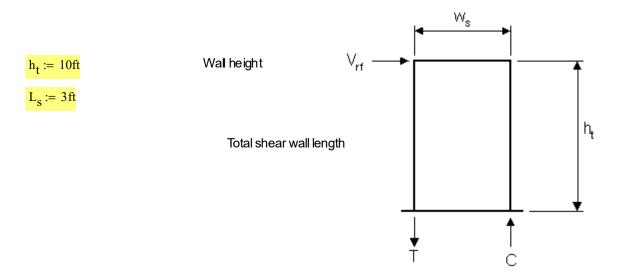

It is less than 5% above-EOR is OK

$$\mathrm{check}_{HD} \coloneqq \mathrm{if} \left(\frac{\mathrm{T}}{\mathrm{T}_{all}} > 1.0, \text{"NG"}, \text{"OK"} \right) \qquad \quad \mathrm{ratio} \coloneqq \frac{\mathrm{T}}{\mathrm{T}_{all}} = 1.03 \quad \boxed{\mathrm{check}_{HD} = \text{"NG"}}$$

ratio :=
$$\frac{T}{T_{all}}$$
 = 1.03 check_{HD} = "NG"

Shear Wall Design for Lateral Load in North-South Direction per NDS-SDPWS2015

Second Floor- Shear wall



$$V_{EQ} := V_{story_2} \cdot \frac{80 ft^2}{2250 ft^2} = 0.977 \cdot kip$$

Tributary shear on the wall per plan dimensions

$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 6 \text{ft} \cdot \left(h_{floor_3} - h_{floor_1}\right) = 4.203 \cdot \text{kip}$$

Wind load

First Segment:

$$w_s := 3 ft$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 3.333 \qquad \qquad \text{check}_{ratio} \coloneqq \text{if} \left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"} \right) \qquad \qquad \text{check}_{ratio} \equiv \text{"OK}$$

$$(\text{WSP}) \coloneqq \text{if} \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s} \right) \quad \text{Aspect ratio factor} \qquad (\text{WSP}) = 0.8$$

Overturning Forces

$$\begin{split} &V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) & \text{Wind shear load at top of wall} \\ &V_{rf.w} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) & \text{Seismic shear load at top of wall of wall (ASD)} \\ &V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) & \text{Seismic shear load at top of wall (ASD)} \\ &M_{ot.w} \coloneqq V_{rf.w} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.w} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} \\ &$$

Resisting Forces

$$P_{rf} := 0 = 0 \cdot lbf$$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

$$\begin{split} & P_{w} \coloneqq W_{ext} \cdot \left(h_{t}\right) \cdot \left(w_{s}\right) & \text{Wall self weight load} & P_{w} = 0.36 \cdot \text{kip} \\ & M_{res} \coloneqq \left[\left(P_{rf} + P_{w}\right) \cdot \frac{w_{s}}{2}\right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} = 0.324 \cdot \text{kip} \cdot \text{ft} \end{split}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2sides (ASD shear capacity factor ref. section 4.3.3) $\Omega_{\rm s} := 2.0$ $\Omega_0 := 2.5$ Overstrength factor $\mathbf{w}_{\mathbf{V}.\mathbf{W}} := \frac{\mathbf{V}_{\mathbf{rf}.\mathbf{W}}}{\mathbf{w}_{\mathbf{c}}} = 841 \cdot \mathbf{plf}$ Wind shear flow

 $w_{v.E} := \frac{V_{rf.E}}{w} = 228 \cdot plf$ Seismic shear flow

 $\frac{W_{V.W}}{}$ = 1.029 check_{WV} = "NG"

$$w_{all.E} \coloneqq \frac{(WSP) \cdot v_{s.7_16.8d.4} \cdot n}{\Omega_s} = 583.3 \cdot plf$$

$$\mathbf{w_{all.E}} := \frac{(\text{WSP}) \cdot \mathbf{v_{s.7_16.8d.4}}^{\cdot n}}{\Omega_{s}} = 583.3 \cdot \text{plf} \quad \text{check}_{wE} := \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{v.E}}{w_{all.E}} = 0.391$$
 check_{wE} = "OK"

Double Sided 7/16" sheathing w/ 8d @ 4" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

t_{sp} := 1.5in Sill plate thickness dia_a := 16d Nail Size

 $sp_a := 3in$ Nail spacing

$$Z_{11} := v_n \cdot C_D = 0.226 \cdot \text{kip}$$

 $Z_{ll} := v_n \cdot C_D = 0.226 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq w_{v.w} \cdot sp_a = 0.21 \cdot kip \hspace{1cm} \text{Shear load to each nail}$

$$\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "NG", "OK"\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 0.932$$

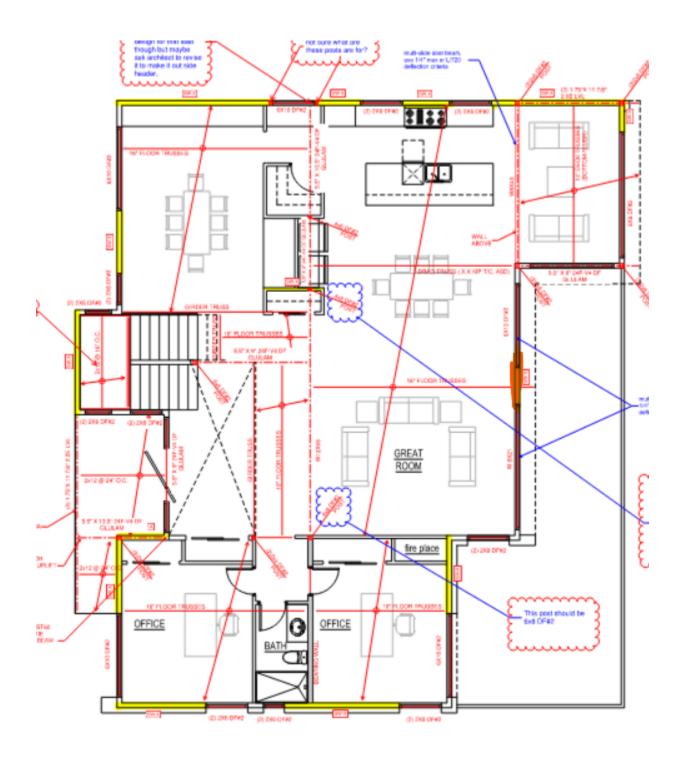
$$ratio_a := \frac{V_{sp}}{Z_{ll}} = 0.932$$

 $Check_a = "OK"$

Use 16d Nail at 3"o.c. Staggered two row

Holdown

$$T := \frac{\max\left(M_{ot.w}, M_{ot.E} \cdot \Omega_o\right) - M_{res}}{w_s} = 8.298 \cdot \text{kip}$$

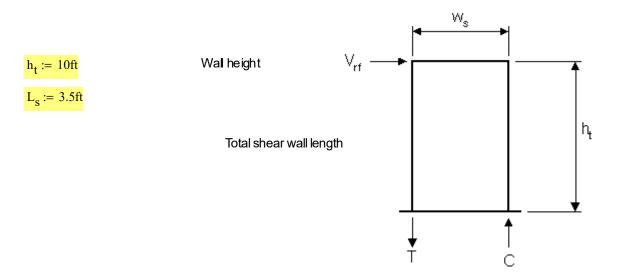

$$check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$$
 $check_T = "HD REQ'D"$

 $T_{a11} := 2MST48 = 8.4 \cdot kip$

Allowable tension load

$$\mathrm{check}_{HD} \coloneqq \mathrm{if}\left(\frac{\mathrm{T}}{\mathrm{T_{all}}} > 1.0, \mathrm{"NG"}, \mathrm{"OK"}\right) \qquad \mathrm{ratio} \coloneqq \frac{\mathrm{T}}{\mathrm{T_{all}}} = 0.988 \qquad \qquad \mathsf{check}_{HD} = \mathrm{"OK"}$$

ratio :=
$$\frac{T}{T_{a11}} = 0.988$$



$$V_{EQ} := V_{story_2} \cdot \frac{215 \text{ft}^2}{2250 \text{ft}^2} = 2.626 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

MEDINA, WA

$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 8.5 \\ \text{ft} \cdot \left(h_{floor_3} - h_{floor_1}\right) = 5.954 \cdot \\ \text{kip}$$
 Wind load

First Segment:

$$w_s := 3.5 ft$$
 Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 2.857 \qquad \qquad \text{check}_{ratio} \coloneqq \text{if} \left(\frac{h_t}{w_s} > 3.5, \text{"NG","OK"} \right) \qquad \qquad \text{check}_{ratio} \equiv \text{"OK"}$$

$$(\text{WSP}) \coloneqq \text{if} \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s} \right) \quad \text{Aspect ratio factor} \qquad (\text{WSP}) = 0.9$$

Overturning Forces

$$\begin{split} &V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) & \text{Wind shear load at top of wall} \\ &V_{rf.w} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) & \text{Seismic shear load at top of wall of wall (ASD)} \\ &V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) & \text{Seismic shear load at top of wall (ASD)} \\ &M_{ot.w} \coloneqq V_{rf.w} \cdot h_t & \text{Overturning moment (ASD)} & M_{ot.w} = 35.7 \cdot \text{kip} \cdot \text{ft} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} & M_{ot.E} = 18.4 \cdot \text{kip} \cdot \text{ft} \\ \end{split}$$

62 of 104

Resisting Forces

$$P_{rf} := \left(DL_{roof} \cdot \frac{19ft}{2} \cdot w_s + DL_{floor} \cdot \frac{19ft}{2} \cdot w_s\right)$$

Total gravity load on wall

$$P_{rf} = 0.997 \cdot kip$$

Designer: NKH Engineering

$$P_w := W_{ext} \cdot (h_t) \cdot (w_s)$$
 Wall self weightload

$$P_{w} = 0.42 \cdot kip$$

$$M_{res} \coloneqq \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \text{ Resisting moment (ASD)}$$

 $M_{res} = 1.488 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2

sides

 $\Omega_{\rm s} := 2.0$

(ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$

Overstrength factor

$$w_{V.W} := \frac{V_{rf.W}}{w_s} = 1021 \cdot plf$$

Wind shear flow

$$w_{v.E} \coloneqq \frac{V_{rf.E}}{w_{c}} = 525 \cdot plf$$
 Seismic shear flow

$$\frac{w_{V.W}}{w_{all.W}} = 0.907$$
 check_{WV} = "OK"

$$\mathbf{w_{all.E}} := \frac{(\text{WSP}) \cdot \mathbf{v_{s.7_16.8d.3} \cdot n}}{\Omega_{s}} = 803.6 \cdot \text{plf} \quad \text{check}_{wE} := \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG", "OK"}\right)$$

$$check_{wE} := if \left(\frac{w_{v.E}}{w_{all.E}} > 1.0, "NG", "OK"\right)$$

63 of 104

Project Location: 7657 14TH ST MEDINA, WA

Designer: NKH Engineering

$$\frac{w_{v.E}}{w_{all.E}} = 0.653$$
 check_{wE} = "OK"

Double Sided 7/16" sheathing w/ 8d @ 3" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

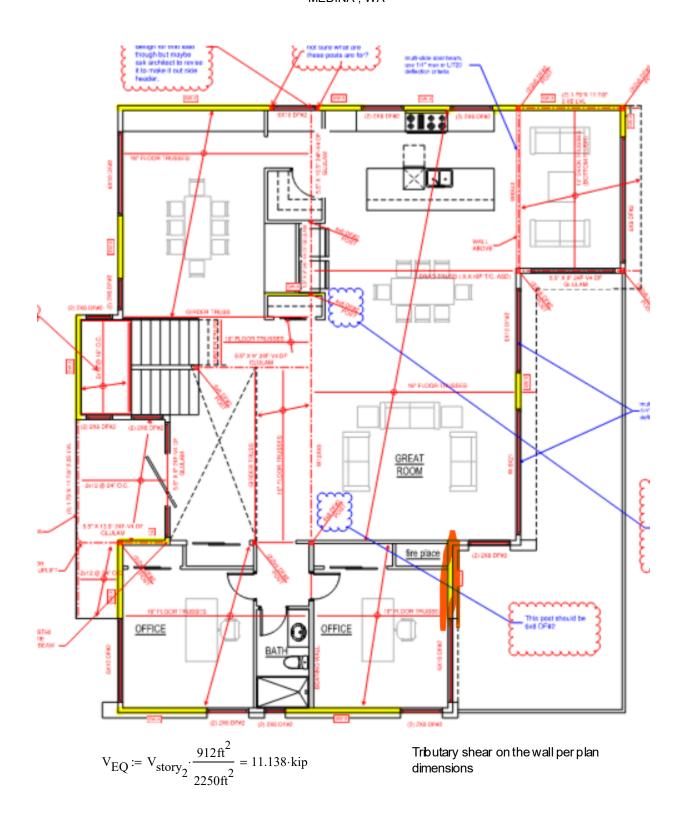
 $\begin{aligned} &t_{sp} \coloneqq 1.5 \text{in} & \text{Sill plate thickness} & \frac{\text{dia}_a \coloneqq 16 \text{d}}{\text{dia}_a \coloneqq 16 \text{d}} & \text{Nail Size} & \frac{\text{sp}_a \coloneqq 2.5 \text{in}}{\text{sp}_a \coloneqq 2.5 \text{in}} & \text{Nail spacing} \\ &Z_{11} \coloneqq v_n \cdot C_D = 0.226 \cdot \text{kip} & \text{Allowable load parallel to grain (ref. NDS table 12)} \end{aligned}$

 $V_{sp} := w_{v.w} \cdot sp_a = 0.213 \cdot kip$ Shear load to each nail

 $\mathsf{Check}_a \coloneqq \mathsf{if} \left(\mathsf{V}_{sp} > \mathsf{Z}_{ll}, \mathsf{"NG"}, \mathsf{"OK"} \right) \qquad \mathsf{ratio}_a \coloneqq \frac{\mathsf{v}_{sp}}{\mathsf{Z}_{ll}} = 0.943$

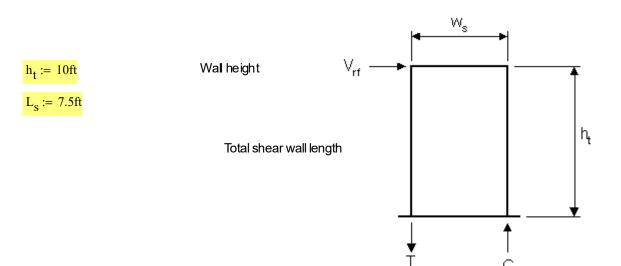
 $\mathsf{Check}_{\mathsf{a}} = \mathsf{"}\mathsf{OK"}$

Use 16d Nail at 2.5"o.c. Staggered two row


Holdown

 $T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_o} = 12.703 \cdot \text{kip}$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$


 $T_{all} := 4MSTC48B3 = 15.9 \cdot kip$ Allowable tension load

 $\operatorname{check}_{HD} \coloneqq \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, \text{"NG"}, \text{"OK"}\right) \qquad \operatorname{ratio} \coloneqq \frac{T}{T_{all}} = 0.799 \qquad \qquad \operatorname{check}_{HD} = \text{"OK"}$

65 of 104

 $V_{wind} := \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot (16ft + 8in) \cdot \left(h_{floor_3} - h_{floor_1}\right) = 11.675 \cdot ki_I$

First Segment:

 $w_{s} := 7.5 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.333 \qquad \text{check}_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, \text{"NG","OK"}\right) \qquad \text{check}_{ratio} = \text{"OK"}$$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \quad \text{Aspect ratio factor} \qquad (WSP) = 1.0$$

Overturning Forces

$$\begin{split} &V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) & \text{Wind shear load at top of wall} \\ &V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) & \text{Seismic shear load at top of wall of wall (ASD)} \\ &V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) & \text{Seismic shear load at top of wall (ASD)} \\ &M_{ot.w} \coloneqq V_{rf.w} \cdot h_t & \text{Overturning moment (ASD)} & M_{ot.w} = 70.1 \cdot \text{kip} \cdot \text{ft} \\ &M_{ot.E} \coloneqq V_{rf.E} \cdot h_t & \text{Overturning moment (ASD)} & M_{ot.E} = 78 \cdot \text{kip} \cdot \text{ft} \\ \end{split}$$

Resisting Forces

$$P_{rf} := \left(DL_{roof} \cdot \frac{13ft}{2} \cdot w_s + DL_{floor} \cdot \frac{13ft}{2} \cdot w_s\right)$$

Total gravity load on wall

$$P_{rf} = 1.463 \cdot kip$$

Designer: NKH Engineering

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$

Wall self weight load

$$P_w = 0.9 \cdot \text{kip}$$

$$M_{res} := \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6$$
 Resisting moment (ASD)

$$M_{res} = 5.316 \cdot kip \cdot ft$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$n := 2$$

sides

$$\Omega_{\rm S} := 2.0$$

(ASD shear capacity factor ref. section 4.3.3)

$$\Omega_0 := 2.5$$

Overstrength factor

$$w_{V.W} := \frac{V_{rf.W}}{w_{c}} = 934 \cdot plf$$

Wind shear flow

$$w_{v.E} \coloneqq \frac{V_{rf.E}}{w_c} = 1040 \cdot plf \hspace{1cm} \text{Seismic shear flow}$$

$$\mathbf{w_{all.w}} := \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.2^{\cdot n}}}}{\Omega_{\mathbf{S}}} = 1640 \cdot \mathbf{pl} \text{ check}_{\mathbf{WV}} := \text{ if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG", "OK"}\right)$$

$$\frac{w_{v.w}}{w_{all.w}} = 0.57$$
 check_{wv} = "OK"

$$w_{all.E} := \frac{(WSP) \cdot v_{s.7_16.8d.2} \cdot n}{\Omega_s} = 1170 \cdot pla$$

$$\mathbf{w_{all.E}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{s.7_16.8d.2} \cdot n}}{\Omega_{s}} = 1170 \cdot \text{plf} \qquad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{v.E}}{w_{all.E}} = 0.888$$
 check_{wE} = "OK"

Double Sided 7/16" sheathing w/ 8d @ 2" O.C. Panel Edges @ 12" O.C.

Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

 $t_{sp} := 1.5 in$ Sill plate thickness $dia_a := 16d$ Nail Size

 $sp_a := 3in$

Nail spacing

 $Z_{ll} := v_n \cdot C_D = 0.226 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq w_{v.w} \cdot sp_a = 0.234 \cdot kip$ Shear load to each nail

 $\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "\operatorname{NG"}, "\operatorname{OK"}\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 1.035$

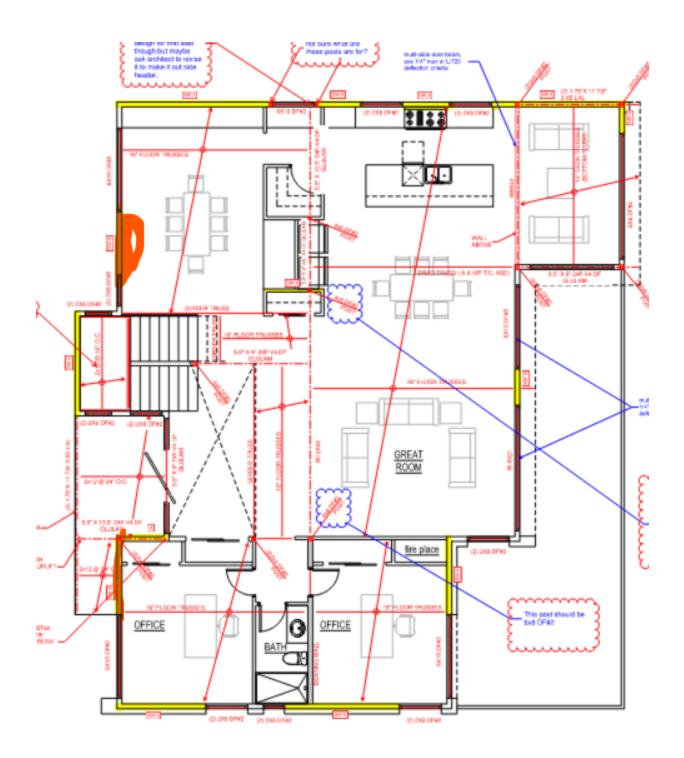
Check_a = "NG"

Use 16d Nail at 2.5"o.c. Staggered two row

It is less than 5% above-EOR is OK

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 25.279 \cdot \text{kip}$$


 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

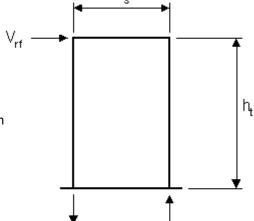
 $T_{a11} := 4MST60 = 24.94 \cdot kip$

Allowable tension load

$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, \text{"NG"}, \text{"OK"}\right) \qquad \operatorname{ratio} := \frac{T}{T_{all}} = 1.014 \qquad \qquad \operatorname{check}_{HD} = \text{"NG"}$$

It is less than 5% above-EOR is OK

$$V_{EQ} := V_{story_2} \cdot \frac{1230 ft^2}{2250 ft^2} = 15.021 \cdot kip$$


Tributary shear on the wall per plan dimensions

 $V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot (16ft + 8in) \cdot \left(h_{floor_3} - h_{floor_1}\right) = 11.675 \cdot kip \quad \text{Wind load}$

 $L_s := 7.5 ft + 6 ft$

Wall height

Total shear wall length

First Segment:

$$w_s := 6ft$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.667$$

$$check_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, "NG", "OK" \right)$$

$$(WSP) := if \left(\frac{h_t}{w_S} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_S}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$
 $W_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$

Wind shear load at top of wall

$$V_{rf.w} = 3.11 \cdot kip$$

$$V_{rf.E} := \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right)$$

Seismic shear load at top of wall (ASD)

$$V_{rf.E} = 4.67 \cdot kip$$

$$\mathsf{M}_{\text{ot.w}} \coloneqq \mathsf{V}_{\text{rf.w}} \cdot \mathsf{h}_{\mathsf{t}}$$

Overturning moment (ASD)

$$M_{\text{ot.w}} = 31.1 \cdot \text{kip} \cdot \text{ft}$$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$

Overturning moment (ASD)

$$M_{ot.E} = 46.7 \cdot \text{kip} \cdot \text{ft}$$

Resisting Forces

$$\mathsf{P}_{rf} \coloneqq \mathsf{DL}_{roof} \cdot \frac{18 \mathsf{ft}}{2} \cdot \mathsf{w}_{s} + \mathsf{DL}_{floor} \cdot \frac{18 \mathsf{ft}}{2} \cdot \mathsf{w}_{s}$$

Total gravity load on wall

$$P_{rf} = 1.62 \cdot kip$$

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$

Wall self weight load

$$P_w = 0.72 \cdot kip$$

$$M_{res} \coloneqq \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 \text{ Resisting moment (ASD)}$$

$$M_{res} = 4.212 \cdot kip \cdot ft$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$n := 2$$

sides

$$\Omega_{\rm s} := 2.0$$

(ASD shear capacity factor ref. section 4.3.3)

$$\Omega_0 := 2.5$$

Overstrength factor

$$w_{v.w} := \frac{V_{rf.w}}{w_s} = 519 \cdot plf$$

Wind shear flow

$$\mathbf{w}_{v.E} := \frac{\mathbf{V}_{rf.E}}{\mathbf{w}_{s}} = 779 \cdot plf$$

Seismic shear flow

Project Location: 7657 14TH ST MEDINA, WA

$$\mathbf{w}_{\text{all.w}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{\text{w.7_}16.8\text{d.3} \cdot \text{n}}}{\Omega_{\text{S}}} = 1260 \cdot \text{pl} \text{ check}_{\text{WV}} \coloneqq \text{if} \left(\frac{\mathbf{w}_{\text{V.W}}}{\mathbf{w}_{\text{all.w}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{V.W}}{w_{all.w}} = 0.412 \qquad \text{check}_{WV} = \text{"OK"}$$

$$w_{all.E} \coloneqq \frac{(WSP) \cdot v_{s.7_16.8d.3} \cdot n}{\Omega_s} = 900 \cdot plf$$

$$\mathbf{w_{all.E}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{s.7_16.8d.3}} \cdot \mathbf{n}}{\Omega_{s}} = 900 \cdot \text{plf} \qquad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{v.E}}{w_{all.E}} = 0.865$$
 check_{wE} = "OK"

Designer: NKH Engineering

Double Sided 7/16" sheathing w/ 8d @ 3" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

Nail spacing

$$Z_{11} := v_n \cdot C_D = 0.226 \cdot \text{kip}$$

 $\begin{aligned} &t_{sp} \coloneqq 1.5 \text{in} & \text{Sill plate thickness} & \frac{\text{dia}_a \coloneqq 16 \text{d}}{\text{all Size}} & \text{sp}_a \coloneqq 5 \text{in} \\ &Z_{ll} \coloneqq v_n \cdot C_D = 0.226 \cdot \text{kip} & \text{Allowable load parallel to grain (ref. NDS table 12)} \end{aligned}$

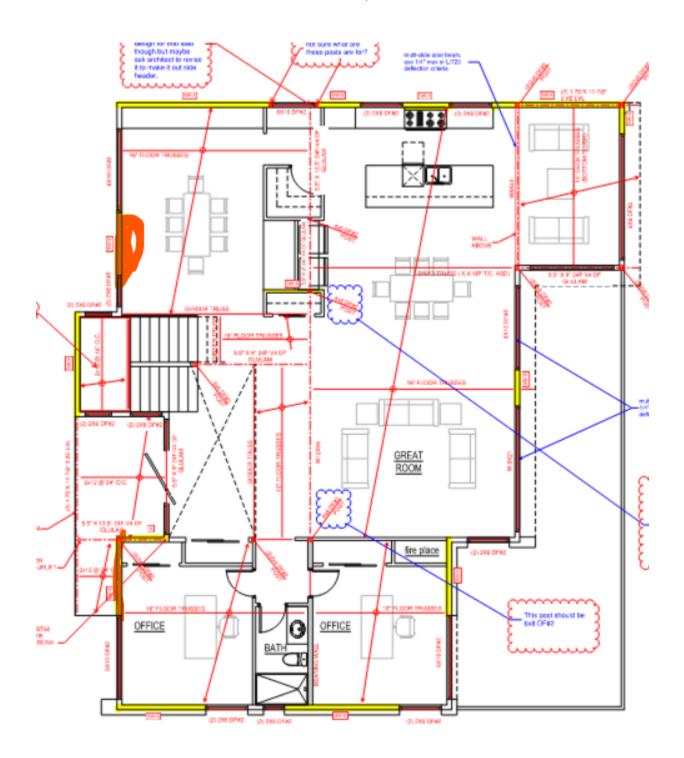
 $V_{sp} \coloneqq w_{v.w} \cdot sp_a = 0.216 \cdot kip$ Shear load to each nail

$$\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "NG", "OK"\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 0.958$$

 $Check_a = "OK"$

Use 16d Nail at 5"o.c. Staggered two row

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 18.77 \cdot \text{kip}$$

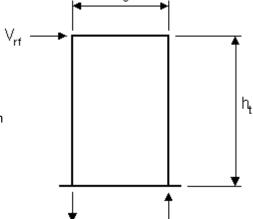

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{all} := 3MST60 = 18.705 \cdot kip$ Allowable tension load

$$check_{HD} := if \left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$
 ratio $:= \frac{T}{T_{all}} = 1.003$

 $check_{HD} = "NG"$

It is less than 5% above-EOR is OK


$$V_{EQ} := V_{story_2} \cdot \frac{30 ft^2}{2250 ft^2} = 0.366 \cdot kip$$

Tributary shear on the wall per plan dimensions

$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot (3\,\mathrm{ft}) \cdot \left(h_{floor_3} - h_{floor_1}\right) = 2.102 \cdot \mathrm{kip}$$
 Wind load

Wall height

Total shear wall length

First Segment:

$$w_{s} := 9.5 ft$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.053$$
 check_{ratio} := if $\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right)$

$$(\text{WSP}) \coloneqq \text{if} \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) \qquad \text{Wind shear load at top of wall} \tag{ASD}$$

$$V_{rf.w} = 1.26 \cdot kip$$

$$V_{rf,E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) \qquad \text{ Seismic shear load at top of wall (ASD)}$$

$$V_{rf.E} = 0.26 \cdot kip$$

$$M_{ot.w} := V_{rf.w} \cdot h_t$$
 Overturning moment (ASD) $M_{ot.w} = 12.6 \cdot kip \cdot ft$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$
 Overturning moment (ASD) $M_{ot.E} = 2.6 \cdot kip \cdot ft$

Resisting Forces

$$\frac{P_{rf} := 0}{Total \, gravity \, load \, on \, wall}$$

$$P_{rf} = 0 \cdot kip$$

Designer: NKH Engineering

$$P_w := W_{ext} \cdot (h_t) \cdot (w_s)$$
 Wall self weight load $P_w = 1.14 \cdot kip$

$$M_{res} := \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6$$
 Resisting moment (ASD) $M_{res} = 3.249 \cdot \text{kip} \cdot \text{ft}$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1sides

 $\Omega_{\rm S} := 2.0$ (ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$ Overstrength factor

 $w_{v.w} := \frac{V_{rf.w}}{w_c} = 133 \cdot plf$ Wind shear flow

 $w_{v.E} := \frac{V_{rf.E}}{w} = 27 \cdot plf$ Seismic shear flow

$$\mathbf{w_{all.w}} \coloneqq \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.6^{\cdot n}}}}{\Omega_{s}} = 335 \cdot \mathbf{plf} \text{ check}_{wv} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{V.W}}{w_{all.w}} = 0.396 \qquad \text{check}_{WV} = \text{"OK"}$$

$$\mathbf{w}_{all.E} := \frac{(\mathbf{WSP}) \cdot \mathbf{v}_{s.7_16.8d.6} \cdot \mathbf{n}}{\Omega_{s}} = 240 \cdot \mathbf{plf} \qquad \mathbf{check}_{wE} := \mathbf{if} \left(\frac{\mathbf{w}_{v.E}}{\mathbf{w}_{all.E}} > 1.0, \text{"NG"}, \text{"OK"} \right)$$

$$\frac{w_{v.E}}{w_{all.E}} = 0.112$$
 check_{wE} = "OK"

75 of 104

Single Sided 7/16" sheathing w/ 8d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_{D} := 1.6$

 $t_{sp} := 1.5 \text{in}$ Sill plate thickness $dia_a := 16 \text{d}$ Nail Size

 $sp_a := 8in$

Nail spacing

 $Z_{ll} := v_n \cdot C_D = 0.226 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq w_{v.w} \cdot sp_a = 0.088 \cdot kip \hspace{1cm} \text{Shear load to each nail}$

 $\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "\operatorname{NG"}, "\operatorname{OK"}\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 0.392$

 $Check_a = "OK"$

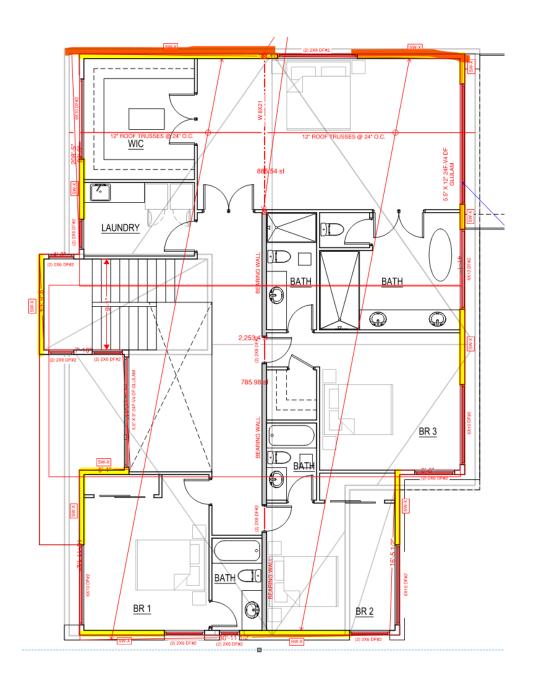
Use 16d Nail at 5"o.c. Staggered two row

Holdown

$$T := \frac{\max(M_{ot.W}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 0.985 \cdot \text{kip}$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{all} := MST37 = 2.705 \cdot kip$


Allowable tension load

$$\operatorname{check}_{HD} \coloneqq \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, \text{"NG"}, \text{"OK"}\right) \qquad \operatorname{ratio} \coloneqq \frac{T}{T_{all}} = 0.364 \qquad \qquad \operatorname{check}_{HD} = \text{"OK"}$$

ratio :=
$$\frac{T}{T_{a11}} = 0.364$$

Shear Wall Design for Lateral Load in East-West Direction per NDS-SDPWS2015

Third Floor- Shear wall

Project Location: 7657 14TH ST Designer: NKH Engineering

MEDINA, WA

$$V_{EQ} := V_{story_3} \cdot \frac{907 \text{ ft}^2}{2250 \text{ ft}^2} = 6.075 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions


 $V_{wind} := \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 24 \text{ft} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 8.772 \cdot \text{kip}$

Wind load

 $h_t := 9 \cdot ft$

 $L_S := 16ft + 8in + 19ft + 9in$

Wall height

First Segment:

$$w_s := 16ft + 8in$$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 0.54$$

$$check_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, "NG", "OK" \right)$$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) \qquad \text{Wind shear load at top of wall} \tag{ASD}$$

$$V_{rf.w} = 2.41 \cdot kip$$

$$V_{rf,E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) \qquad \text{ Seismic shear load at top of wall (ASD)}$$

 $V_{rfE} = 1.95 \cdot kip$

MEDINA , WA

$$M_{ot.w} := V_{rf.w} \cdot h_t$$
 Overturning moment (ASD) $M_{ot.w} = 21.7 \cdot kip \cdot ft$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$
 Overturning moment (ASD) $M_{ot.E} = 17.5 \cdot kip \cdot ft$

Resisting Forces

$$rac{ extsf{P}_{ ext{rf}} \coloneqq 0}{ ext{Total gravity load on wall}}$$

$$P_{rf} = 0 \cdot kip$$

$$P_w := W_{ext} \cdot (h_t) \cdot (w_s)$$
 Wall self weight load $P_w = 1.8 \cdot kip$

$$M_{res} := \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6$$
 Resisting moment (ASD) $M_{res} = 9 \cdot \text{kip} \cdot \text{ft}$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$n := 1$$
 sides

$$\Omega_s := 2.0$$
 (ASD shear capacity factor ref. section 4.3.3)

$$\Omega_0 := 2.5$$
 Overstrength factor

$$w_{v.w} \coloneqq \frac{V_{rf.w}}{w_{_S}} = 145 \cdot plf \hspace{1cm} \text{Wind shear flow}$$

$$w_{v.E} \coloneqq \frac{v_{rf.E}}{w_s} = 117 \cdot plf$$
 Seismic shear flow

$$\mathbf{w_{all.w}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{w.7_16.8d.6^{\cdot n}}}}{\Omega_{s}} = 335 \cdot \text{plf} \qquad \text{check}_{wv} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{v.w}}{w_{all.w}} = 0.431$$
 check_{wv} = "OK"

$$\mathbf{w_{all.E}} \coloneqq \frac{\text{(WSP)} \cdot \mathbf{v_{s.7_16.8d.6} \cdot n}}{\Omega_{s}} = 240 \cdot \text{plf} \qquad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$check_{wE} = "OK"$$

79 of 104

Single Sided 7/16" sheathing w/ 8d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

Nail spacing

Designer: NKH Engineering

 $\begin{aligned} &t_{sp} \coloneqq 1.5 \text{in} & \text{Sill plate thickness} & & & & & & & & \\ &t_{a} \coloneqq 16 \text{d} & \text{Nail Size} & & & & & \\ &Z_{ll} \coloneqq v_n \cdot C_D = 0.226 \cdot \text{kip} & & & & & \\ &\text{Allowable load parallel to grain (ref. NDS table 12)} \end{aligned}$

 $V_{sp} := w_{v,w} \cdot sp_a = 0.096 \cdot kip$ Shear load to each nail

 $\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "\operatorname{NG"}, "\operatorname{OK"}\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 0.427$

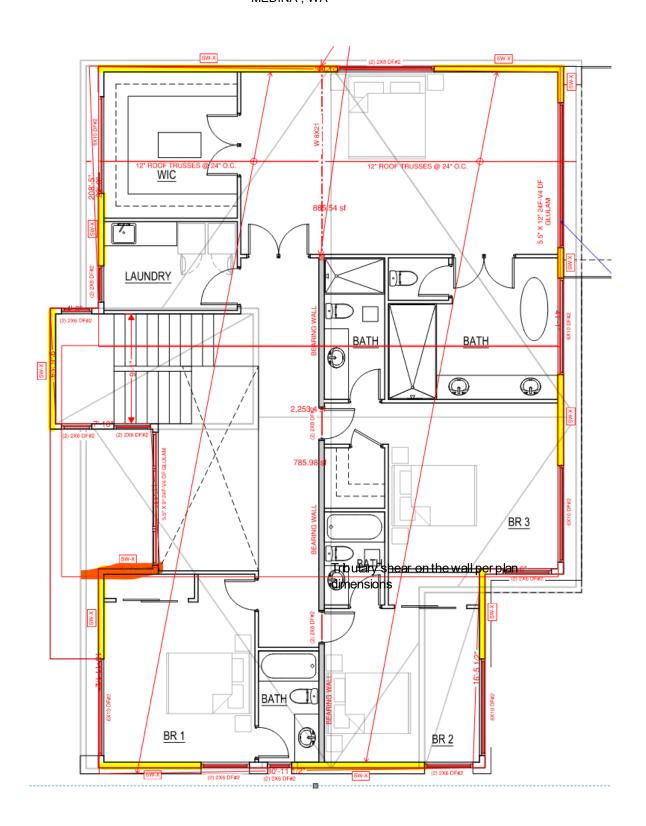
$$ratio_a := \frac{V_{sp}}{Z_{11}} = 0.427$$

 $\mathsf{Check}_a = \mathsf{"OK"}$

Use 16d Nail at 8"o.c. Staggered

Holdown

$$T := \frac{max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 2.087 \cdot kip$$


 $\mathsf{check}_T \coloneqq \mathsf{if}(\mathsf{T} > 150\mathsf{lbf}\,, \mathsf{"HD}\,\mathsf{REQ'D"}\,, \mathsf{"NOT}\,\mathsf{REQ'D"}) \quad \mathsf{check}_T = \mathsf{"HD}\,\mathsf{REQ'D"}$

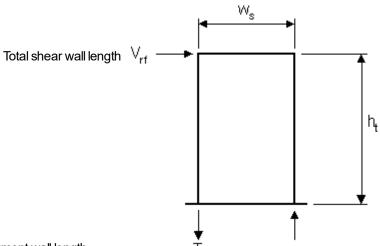
 $T_{all} := MST37 = 2.705 \cdot kip$

Allowable tension load

$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, \text{"NG"}, \text{"OK"}\right) \qquad \operatorname{ratio} := \frac{T}{T_{all}} = 0.772 \qquad \qquad \operatorname{check}_{HD} = \text{"OK"}$$

ratio :=
$$\frac{T}{T_{a11}} = 0.772$$

$$V_{EQ} := V_{story_3} \cdot \frac{925 \text{ ft}^2}{2250 \text{ ft}^2} = 6.195 \cdot \text{kip}$$


 $V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 26.5 \, \text{ft} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 9.685 \cdot \text{kip}$

Wind load

 $h_t := 9 \cdot ft$

 $L_s := 4.5 ft$

First Segment:

 $w_s := 4.5 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 2 \qquad \qquad \text{check}_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"} \right)$$

$$(\text{WSP}) := \text{if} \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s} \right) \text{ Aspect ratio factor }$$

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_{s}}{L_{s}}\right) \qquad \text{Wind shear load at top of wall} \tag{ASD}$$

$$V_{rf.w} = 5.81 \cdot kip$$

$$V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) \qquad \text{Seismic shear load at top of wall (ASD)}$$

$$V_{rf.E} = 4.34 \cdot kip$$

$$\begin{split} \mathbf{M}_{ot.w} &\coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t & \text{Overturning moment (ASD)} \\ \mathbf{M}_{ot.E} &\coloneqq \mathbf{V}_{rf.E} \cdot \mathbf{h}_t & \text{Overturning moment (ASD)} \\ \end{split}$$

Resisting Forces

$$P_{rf} := 0 = 0 \cdot lbf$$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

$$\begin{aligned} & P_{w} \coloneqq W_{ext} \cdot \left(h_{t}\right) \cdot \left(w_{s}\right) & \text{Wall self weight load} & P_{w} = 0.486 \cdot \text{kip} \\ & M_{res} \coloneqq \left[\left(P_{rf} + P_{w}\right) \cdot \frac{w_{s}}{2}\right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} = 0.656 \cdot \text{kip} \cdot \text{ft} \end{aligned}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1 sides

 $\Omega_{\rm S} := 2.0$ (ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$ Overstrength factor

 $w_{v.w} := \frac{V_{rf.w}}{w_s} = 1291 \cdot plf$ Wind shear flow

 $w_{v.E} \coloneqq \frac{v_{rf.E}}{w_{s}} = 964 \cdot plf \hspace{1cm} \text{Seismic shear flow}$

 $\mathbf{w_{all.w}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{w.7_16.8d.2}} \cdot \mathbf{n}}{\Omega_{\text{S}}} = 820 \cdot \text{plf} \qquad \text{check}_{\text{WV}} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$ $\frac{\mathbf{w_{v.w}}}{\mathbf{w_{v.w}}} = 1.575 \qquad \text{check}_{\text{WV}} = \text{"NG"}$

 $\mathbf{w_{all.E}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{s.7_16.8d.6}} \cdot \mathbf{n}}{\Omega_{s}} = 240 \cdot \text{plf} \qquad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$

83 of 104

 $check_{wE} = "NG"$

Designer: NKH Engineering

Single Sided 7/16" sheathing w/ 8d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

 $t_{sp} := 1.5 in$ Sill plate thickness $dia_a := 16d$ Nail Size

 $sp_a := 8in$ Nail spacing

 $Z_{11} := v_n \cdot C_D = 0.226 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} := w_{v.w} \cdot sp_a = 0.861 \cdot kip$ Shear load to each nail

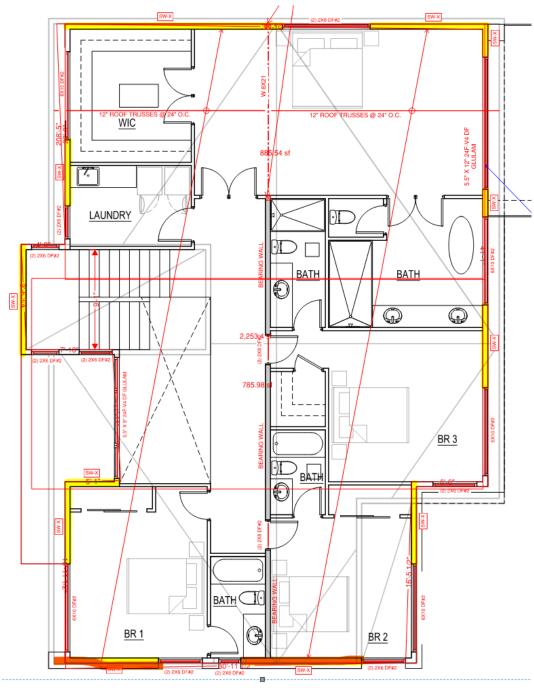
Sp v.w = a $\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "NG", "OK"\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 3.816$

 $\mathsf{Check}_a = \mathsf{"NG"}$

Use 16d Nail at 8"o.c. Staggered

Holdown

$$T := \frac{\max\left(M_{ot.w}, M_{ot.E} \cdot \Omega_{o}\right) - M_{res}}{w_{s}} = 21.537 \cdot kip$$


 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{a11} := MST60 = 6.235 \cdot kip$

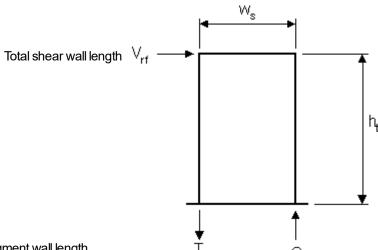
Allowable tension load

$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, \text{"NG"}, \text{"OK"}\right) \qquad \operatorname{ratio} := \frac{T}{T_{all}} = 3.454 \qquad \qquad \operatorname{check}_{HD} = \text{"NG"}$$

ratio :=
$$\frac{T}{T_{a11}} = 3.454$$

$$V_{EQ} := V_{story_3} \cdot \frac{260 \text{ ft}^2}{2250 \text{ ft}^2} = 1.741 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions


$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 9 \text{ft} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 3.289 \cdot \text{kip}$$

Wind load

 $h_t := 9 \cdot ft$

 $L_{s} := 8.5 ft + 11 ft$

Wall height

First Segment:

 $w_s := 8.5 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.059$$
 check_{ratio} := if $\left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"}\right)$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor}$$

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$
 Wind shear load at top of wall $V_{rf.w} = 0.86 \cdot \text{kip}$ (ASD)

$$V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) \qquad \text{Seismic shear load at top of } \\ V_{rf.E} = 0.53 \cdot \text{kip}$$

$$M_{ot.w} := V_{rf.w} \cdot h_t$$
 Overturning moment (ASD) $M_{ot.w} = 7.7 \cdot \text{kip} \cdot \text{ft}$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$
 Overturning moment (ASD) $M_{ot.E} = 4.8 \cdot kip \cdot ft$

Resisting Forces

 $P_{rf} := 0$

Total gravity load on wall

$$P_{rf} = 0 \cdot kip$$

Designer: NKH Engineering

 $P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$

Wall self weight load

$$P_{W} = 0.918 \cdot kip$$

$$\mathbf{M}_{res} \coloneqq \left[\left(\mathbf{P}_{rf} + \mathbf{P}_{w} \right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 \text{ Resisting moment (ASD)}$$

 $M_{res} = 2.341 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1

sides

 $\Omega_{\rm S} := 2.0$

(ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$

Overstrength factor

$$\mathbf{w}_{\mathbf{v.w}} \coloneqq \frac{\mathbf{V_{rf.w}}}{\mathbf{w_{s}}} = 101 \cdot \mathsf{plf}$$

Wind shear flow

$$w_{v.E} := \frac{V_{rf.E}}{w_s} = 63 \cdot plf$$

Seismic shear flow

$$\mathbf{w}_{\text{all.w}} := \frac{(\text{WSP}) \cdot \mathbf{v}_{\text{w.7_16.8d.6} \cdot \text{n}}}{\Omega_{\text{s}}} = 335 \cdot \text{plf} \qquad \text{check}_{\text{WV}} := \text{if} \left(\frac{\mathbf{w}_{\text{v.w}}}{\mathbf{w}_{\text{all.w}}} > 1.0, \text{"NG", "OK"} \right)$$

$$check_{WV} := if \left(\frac{w_{V.W}}{w_{all.w}} > 1.0, "NG", "OK" \right)$$

$$\frac{w_{V.W}}{w_{all.w}} = 0.302$$
 check_{wv} = "OK"

$$w_{all.E} := \frac{(WSP) \cdot v_{s.7_16.8d.6} \cdot n}{\Omega_s} = 240 \cdot pl$$

$$\mathbf{w_{all.E}} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v_{s.7_16.8d.6^{\cdot n}}}}{\Omega_{s}} = 240 \cdot \text{plf} \qquad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.E}}}{\mathbf{w_{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{v.E}}{w_{all.E}} = 0.26$$

 $check_{WE} = "OK"$

Single Sided 7/16" sheathing w/ 8d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

 $t_{sp} := 1.5 in$ Sill plate thickness $dia_a := 16d$ Nail Size

 $sp_a := 8in$

Nail spacing

 $Z_{11} := v_n \cdot C_D = 0.226 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} := w_{v,w} \cdot sp_a = 0.067 \cdot kip$ Shear load to each nail

 $\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "NG", "OK"\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 0.299$

 $\mathsf{Check}_a = \mathsf{"OK"}$

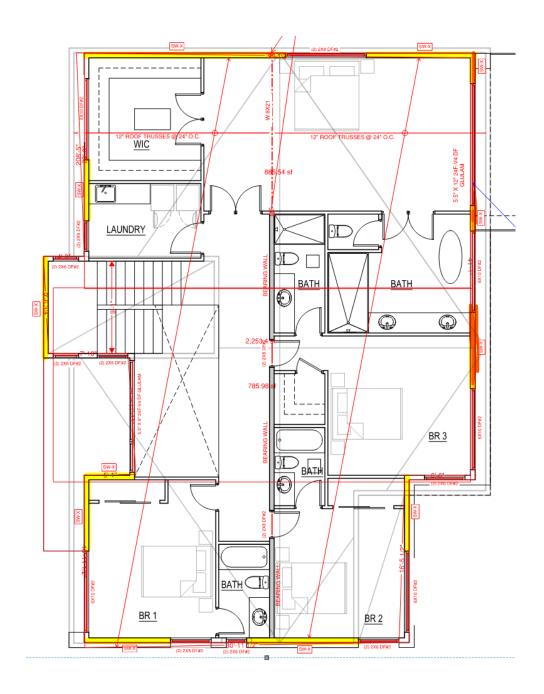
Holdown

$$T := \frac{\max\left(M_{\text{ot.w}}, M_{\text{ot.E}} \cdot \Omega_{\text{o}}\right) - M_{\text{res}}}{w_{\text{s}}} = 1.131 \cdot \text{kip}$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{all} := MST37 = 2.705 \cdot kip$

Allowable tension load


$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, \text{"NG"}, \text{"OK"}\right) \qquad \operatorname{ratio} := \frac{T}{T_{all}} = 0.418 \qquad \qquad \operatorname{check}_{HD} = \text{"OK"}$$

$$ratio := \frac{T}{T_{all}} = 0.418$$

Shear Wall Design for Lateral Load in North-South

Direction per NDS-SDPWS2015

Third Floor- Shear wall

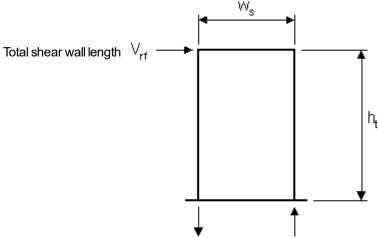
Project Location: 7657 14TH ST

MEDINA, WA

$$V_{EQ} := V_{story_3} \cdot \frac{160 \text{ft}^2}{2250 \text{ft}^2} = 1.072 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

 $V_{wind} := \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 4 \text{ ft} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.462 \cdot \text{kip}$


Wind load

Designer: NKH Engineering

 $h_t := 9 \cdot ft$

 $L_s := 3 ft + 7.5 ft$

Wall height

First Segment:

 $w_s := 3ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 3 \qquad \text{check}_{\text{ratio}} := if \left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"} \right)$$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor }$$

$$(WSP) = 0.9$$

Overturning Forces

$$V_{rf.w} \coloneqq \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right) \qquad \text{Wind shear load at top of wall} \tag{ASD}$$

$$V_{rf.w} = 0.25 \cdot kip$$

$$V_{rf.E} \coloneqq \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right) \qquad \text{Seismic shear load at top of wall (ASD)}$$

$$V_{rf.E} = 0.21 \cdot kip$$

90 of 104

$$\begin{split} \mathbf{M}_{ot.w} &\coloneqq \mathbf{V}_{rf.w} \cdot \mathbf{h}_t & \text{Overturning moment (ASD)} \\ \mathbf{M}_{ot.E} &\coloneqq \mathbf{V}_{rf.E} \cdot \mathbf{h}_t & \text{Overturning moment (ASD)} \\ \end{split}$$

Resisting Forces

$$P_{rf} := DL_{roof} \cdot \frac{20ft}{2} \cdot w_{s}$$

Total gravity load on wall

$$P_{rf} = 0.45 \cdot kip$$

$$\begin{aligned} & P_{w} \coloneqq W_{ext} \cdot \left(h_{t} \right) \cdot \left(w_{s} \right) & \text{Wall self weight load} & P_{w} = 0.324 \cdot \text{kip} \\ & M_{res} \coloneqq \left[\left(P_{rf} + P_{w} \right) \cdot \frac{w_{s}}{2} \right] \cdot 0.6 & \text{Resisting moment (ASD)} & M_{res} = 0.697 \cdot \text{kip} \cdot \text{ft} \end{aligned}$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 1 sides

 $\Omega_s := 2.0$ (ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$ Overstrength factor

 $w_{v.w} := \frac{V_{rf.w}}{w_s} = 84 \cdot plf$ Wind shear flow

 $w_{v.E} \coloneqq \frac{V_{rf.E}}{w_{c}} = 71 \cdot plf \hspace{1cm} \text{Seismic shear flow}$

$$\begin{aligned} \mathbf{w_{all.w}} \coloneqq \frac{\text{(WSP)} \cdot \mathbf{v_{w.7_16.8d.6}} \cdot \mathbf{n}}{\Omega_{S}} &= 293.1 \cdot \text{plf} \\ &\qquad \qquad \text{check}_{WV} \coloneqq \text{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG"}, \text{"OK"} \right) \\ &\qquad \qquad \frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} = 0.285 \end{aligned}$$

$$\begin{aligned} \mathbf{w}_{all.E} \coloneqq \frac{(\text{WSP}) \cdot \mathbf{v}_{s.7_16.8d.6} \cdot \mathbf{n}}{\Omega_s} &= 210 \cdot \text{plf} \end{aligned} \quad \text{check}_{wE} \coloneqq \text{if} \left(\frac{\mathbf{w}_{v.E}}{\mathbf{w}_{all.E}} > 1.0, \text{"NG"}, \text{"OK"} \right) \\ \text{check}_{wE} &= \text{"OK"} \end{aligned}$$

91 of 104

Single Sided 7/16" sheathing w/ 8d @ 6" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

$$C_D = 1.6$$

 $t_{sp} := 1.5 \text{in}$ Sill plate thickness $dia_a := 16 \text{d}$ Nail Size

 $sp_a := 8in$

Nail spacing

 $Z_{11} := v_n \cdot C_D = 0.226 \cdot \text{kip}$

Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} := w_{v,w} \cdot sp_a = 0.056 \cdot kip$ Shear load to each nail

 $\operatorname{Check}_{a} := \operatorname{if}\left(V_{sp} > Z_{ll}, "NG", "OK"\right) \qquad \operatorname{ratio}_{a} := \frac{V_{sp}}{Z_{ll}} = 0.247$

 $Check_a = "OK"$

Use 16d Nail at 8"o.c. Staggered

Holdown

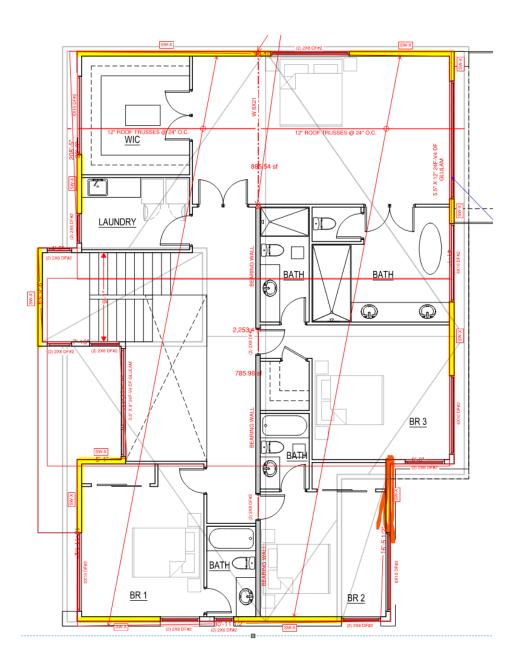
$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 1.375 \cdot \text{kip}$$

 $\mathsf{check}_T \coloneqq \mathsf{if}(\mathsf{T} > 150\mathsf{lbf}\,, \mathsf{"HD}\,\mathsf{REQ'D"}\,, \mathsf{"NOT}\,\mathsf{REQ'D"}) \quad \mathsf{check}_T = \mathsf{"HD}\,\mathsf{REQ'D"}$

 $T_{all} := MST37 = 2.705 \cdot kip$

Allowable tension load

$$check_{HD} := if \left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \qquad ratio := \frac{T}{T_{all}} = 0.508 \qquad check_{HD} = "OK"$$


ratio :=
$$\frac{T}{T_{11}} = 0.508$$

 $T_{all} := DTT2Z = 2.145 \cdot kip$

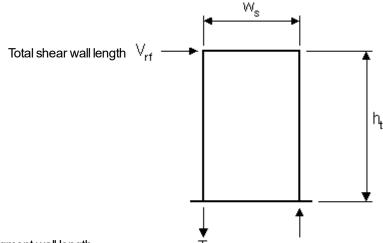
Allowable tension load

$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right) \qquad \operatorname{ratio} := \frac{T}{T_{all}} = 0.641 \qquad \qquad \operatorname{check}_{HD} = "OK"$$

ratio :=
$$\frac{T}{T_{a11}} = 0.641$$

$$V_{EQ} := V_{story_3} \cdot \frac{1100 \text{ft}^2}{2250 \text{ft}^2} = 7.367 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions


$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 20 \\ \text{ft} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 7.31 \cdot \\ \text{kip}$$

Wind load

 $h_t := 9 \cdot ft$

 $L_s := 7.5 ft$

Wall height

First Segment:

 $w_s := 7.5 ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.2 \qquad \qquad check_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, "NG", "OK"\right)$$

(WSP) := if
$$\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right)$$
 Aspect ratio factor

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$

Wind shear load at top of wall (ASD)

$$V_{rf.w} = 4.39 \cdot kip$$

$$V_{rf.E} := \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right)$$

Seismic shear load at top of wall (ASD)

$$V_{rf.E} = 5.16 \cdot kip$$

$$M_{ot.w} := V_{rf.w} \cdot h_t$$

Overturning moment (ASD)

 $M_{ot.w} = 39.5 \cdot \text{kip} \cdot \text{ft}$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$

Overturning moment (ASD)

 $M_{ot.E} = 46.4 \cdot \text{kip} \cdot \text{ft}$

Resisting Forces

Project Location: 7657 14TH ST MEDINA, WA

Total gravity load on wall

$$P_{rf} = 0.731 \cdot kip$$

Designer: NKH Engineering

 $P_w := W_{ext} \cdot (h_t) \cdot (w_s)$

 $P_{rf} := DL_{roof} \cdot \frac{13ft}{2} \cdot w_s$

Wall self weight load

 $P_w = 0.81 \cdot kip$

$$\mathbf{M}_{res} \coloneqq \left[\left(\mathbf{P}_{rf} + \mathbf{P}_{w} \right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 \text{ Resisting moment (ASD)}$$

 $M_{res} = 3.468 \cdot kip \cdot ft$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

n := 2

sides

 $\Omega_s := 2.0$

(ASD shear capacity factor ref. section 4.3.3)

 $\Omega_0 := 2.5$

Overstrength factor

$$w_{v.w} := \frac{V_{rf.w}}{w_s} = 585 \cdot plf$$

Wind shear flow

$$w_{v.E} \coloneqq \frac{V_{rf.E}}{w_s} = 688 \cdot \text{plf} \qquad \qquad \text{Seismic shear flow}$$

$$\mathbf{w_{all.w}} \coloneqq \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.4} \cdot n}}{\Omega_{\mathbf{S}}} = 980 \cdot \mathbf{plf} \qquad \mathbf{check_{WV}} \coloneqq \mathbf{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG"}, \text{"OK"} \right)$$

 $\frac{w_{v.w}}{w_{all.w}} = 0.597$ check_{wv} = "OK"

$$\frac{\mathbf{w}_{all.E} \coloneqq \frac{(\mathbf{WSP}) \cdot \mathbf{v}_{s.7_16.8d.4} \cdot \mathbf{n}}{\Omega_{s}} = 700 \cdot \mathbf{plf} \qquad \mathbf{check}_{wE} \coloneqq \mathbf{if} \left(\frac{\mathbf{w}_{v.E}}{\mathbf{w}_{all.E}} > 1.0, \text{"NG"}, \text{"OK"} \right)$$

$$\begin{aligned} \text{check}_{\text{WE}} &\coloneqq \text{if} \left(\frac{w_{\text{V.E}}}{w_{\text{all.E}}} > 1.0, \text{"NG"}, \text{"OK"} \right) \\ &\frac{w_{\text{V.E}}}{w_{\text{all.E}}} = 0.982 \end{aligned} \quad \text{check}_{\text{WE}} = \text{"OK"}$$

Double Sided 7/16" sheathing w/ 8d @ 4" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_D = 1.6$

Project Location: 7657 14TH ST

MEDINA, WA

t_{sp} := 1.5in Sill plate thickness

dia_a := 16d Nail Size

 $sp_a := 4.5in$ Nail spacing

 $Z_{ll} := v_n \cdot C_D = 0.226 \cdot kip$

Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq w_{v.w} \cdot sp_a = 0.219 \cdot kip \hspace{1cm} \text{Shear load to each nail}$

$$\mathsf{Check}_{\mathsf{a}} \coloneqq \mathsf{if} \left(\mathsf{V}_{\mathsf{sp}} > \mathsf{Z}_{\mathsf{ll}}, \mathsf{"NG"}, \mathsf{"OK"} \right) \qquad \mathsf{ratio}_{\mathsf{a}} \coloneqq \frac{\mathsf{V}_{\mathsf{sp}}}{\mathsf{Z}_{\mathsf{ll}}} = 0.972$$

$$ratio_a := \frac{V_{sp}}{Z_{11}} = 0.972$$

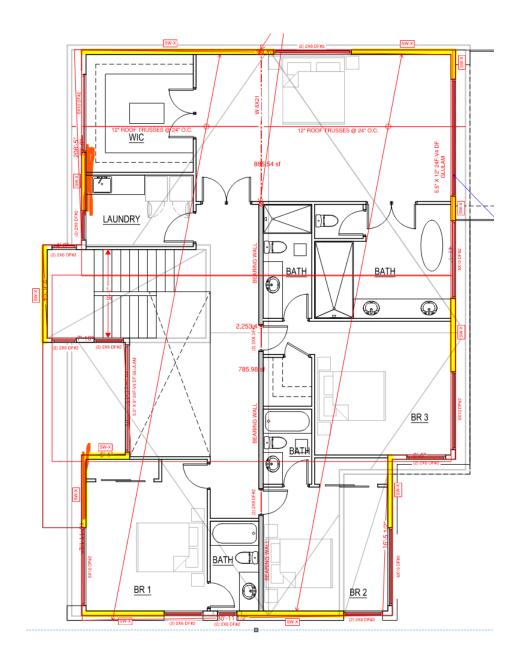
 $Check_a = "OK"$

Designer: NKH Engineering

Use 16d Nail at 4.5"o.c. Staggered

Holdown

$$T := \frac{\max(M_{ot.w}, M_{ot.E} \cdot \Omega_o) - M_{res}}{w_s} = 15.009 \cdot \text{kip}$$


 $\mathsf{check}_T \coloneqq \mathsf{if}(\mathsf{T} > 150\mathsf{lbf}\,, \mathsf{"HD}\,\mathsf{REQ'D"}\,, \mathsf{"NOT}\,\mathsf{REQ'D"}) \quad \mathsf{check}_T = \mathsf{"HD}\,\mathsf{REQ'D"}$

 $T_{all} := 3MST60 = 18.705 \cdot kip$

Allowable tension load

$$\operatorname{check}_{HD} := \operatorname{if}\left(\frac{T}{T_{all}} > 1.0, \text{"NG"}, \text{"OK"}\right) \qquad \operatorname{ratio} := \frac{T}{T_{all}} = 0.802 \qquad \qquad \operatorname{check}_{HD} = \text{"OK"}$$

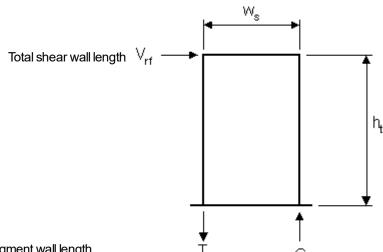
ratio :=
$$\frac{T}{T_{all}} = 0.802$$

$$V_{EQ} := V_{story_3} \cdot \frac{900 \text{ ft}^2}{2250 \text{ ft}^2} = 6.028 \cdot \text{kip}$$

Tributary shear on the wall per plan dimensions

$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 17 \\ \text{ft} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 6.213 \cdot \\ \text{kip}$$

Wind load


Project Location: 7657 14TH ST MEDINA, WA

Designer: NKH Engineering

 $h_t := 9 \cdot ft$

 $L_S := 6ft + 2in + 7.5ft$

Wall height

First Segment:

 $w_s := 6ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 1.5 \qquad check_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, "NG", "OK"\right)$$

$$(WSP) := if \left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right) \text{ Aspect ratio factor} \tag{WSP} = 1.0$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$

Wind shear load at top of wall

$$V_{rf.w} = 1.64 \cdot kip$$

$$V_{rf.E} := \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right)$$

Seismic shear load at top of

$$V_{rf.E} = 1.85 \cdot kip$$

$$M_{ot.w} := V_{rf.w} \cdot h_t$$

Overturning moment (ASD)

$$M_{ot.w} = 14.7 \cdot kip \cdot ft$$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$

Overturning moment (ASD)

$$M_{ot.E} = 16.7 \cdot \text{kip} \cdot \text{ft}$$

Resisting Forces

$$P_{rf} \coloneqq DL_{roof} \cdot \frac{17 ft + 9 in}{2} \cdot w_s$$

Total gravity load on wall

$$P_{rf} = 0.799 \cdot kip$$

Designer: NKH Engineering

$$P_{w} := W_{ext} \cdot (h_{t}) \cdot (w_{s})$$

Wall self weight load

$$P_w = 0.648 \cdot \text{kip}$$

$$\mathbf{M}_{res} \coloneqq \left[\left(\mathbf{P}_{rf} \, + \, \mathbf{P}_{w} \right) \cdot \frac{\mathbf{w}_{s}}{2} \right] \cdot 0.6 \ \ \, \text{Resisting moment (ASD)}$$

$$M_{res} = 2.604 \cdot kip \cdot ft$$

Plywood Shear (ref. ANSI/AF&PA SDPWS)

$$n := 1$$

sides

$$\Omega_{\rm S} := 2.0$$

(ASD shear capacity factor ref. section 4.3.3)

$$\Omega_0 := 2.5$$

Overstrength factor

$$\mathbf{w_{v.w}} := \frac{\mathbf{V_{rf.w}}}{\mathbf{w_{s}}} = 273 \cdot \mathbf{plf}$$

Wind shear flow

$$w_{v.E} \coloneqq \frac{V_{rf.E}}{w_{s}} = 309 \cdot plf$$
 Seismic shear flow

$$\frac{\mathbf{w_{all.w}} := \frac{(\mathbf{WSP}) \cdot \mathbf{v_{w.7_16.8d.4} \cdot n}}{\Omega_{S}} = 490 \cdot \mathbf{plf} \qquad \mathbf{check_{wv}} := \mathbf{if} \left(\frac{\mathbf{w_{v.w}}}{\mathbf{w_{all.w}}} > 1.0, \text{"NG"}, \text{"OK"} \right)$$

$$check_{WV} := if \left(\frac{w_{V.W}}{w_{all.W}} > 1.0, "NG", "OK" \right)$$

$$\frac{w_{V.W}}{w_{all.W}} = 0.557$$

$$check_{WV} = "OK"$$

$$w_{all.E} := \frac{(WSP) \cdot v_{s.7} - 16.8d.4^{\cdot n}}{\Omega_s} = 350 \cdot plf$$

$$w_{all.E} := \frac{(\text{WSP}) \cdot v_{\text{s.7_}16.8d.4} \cdot n}{\Omega_{\text{s}}} = 350 \cdot \text{plf}$$

$$check_{\text{wE}} := if \left(\frac{w_{\text{v.E}}}{w_{\text{all.E}}} > 1.0, \text{"NG"}, \text{"OK"}\right)$$

$$\frac{w_{\text{v.E}}}{w_{\text{all.E}}} = 0.882$$

$$check_{\text{wE}} = \text{"OK"}$$

Single Sided 7/16" sheathing w/ 8d @ 4" O.C. Panel Edges @ 12" O.C. Interior Supports (ref. table 4.3A)

Bottom Plate Nailing $C_{D} := 1.6$

 $t_{sp} := 1.5 in$ Sill plate thickness $dia_a := 16d$ Nail Size

 $sp_a := 8in$ Nail spacing

 $Z_{ll} := v_n \cdot C_D = 0.226 \cdot \text{kip}$ Allowable load parallel to grain (ref. NDS table 12)

 $V_{sp} \coloneqq w_{v.w} \cdot sp_a = 0.182 \cdot kip \hspace{1cm} \text{Shear load to each nail}$

Check_a := if(
$$V_{sp} > Z_{ll}$$
, "NG", "OK") ratio_a := $\frac{V_{sp}}{Z_{ll}} = 0.806$

$$ratio_a := \frac{V_{sp}}{Z_{11}} = 0.806$$

 $Check_a = "OK"$

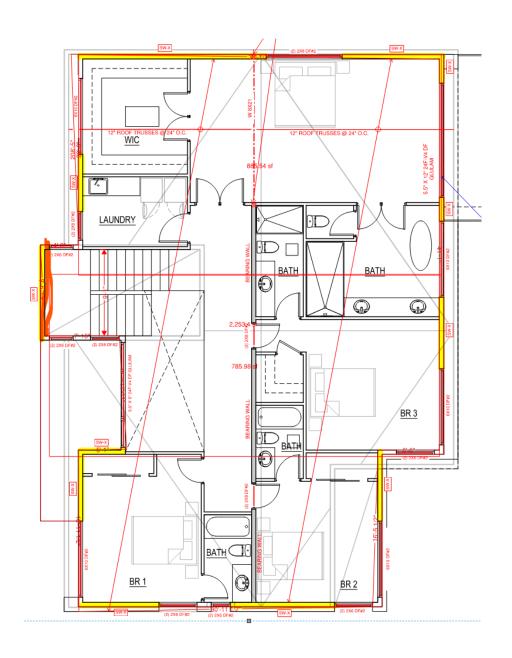
Use 16d Nail at 4.5"o.c. Staggered

Holdown

$$T := \frac{\max\left(M_{ot.W}, M_{ot.E} \cdot \Omega_o\right) - M_{res}}{w_s} = 6.512 \cdot kip$$

 $check_T := if(T > 150lbf, "HD REQ'D", "NOT REQ'D")$ $check_T = "HD REQ'D"$

 $T_{all} := MST60 = 6.235 \cdot kip$


Allowable tension load

$$check_{HD} := if \left(\frac{T}{T_{all}} > 1.0, "NG", "OK"\right)$$
 ratio $:= \frac{T}{T_{all}} = 1.045$

ratio :=
$$\frac{T}{T_{a11}}$$
 = 1.045

 $check_{HD} = "NG"$

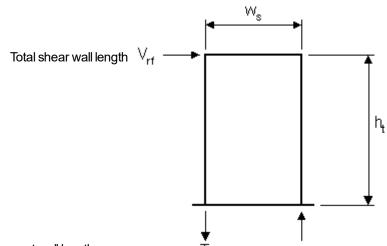
It is less than 5% above-EOR is OK

$$V_{EQ} := V_{story_3} \cdot \frac{20 ft^2}{2250 ft^2} = 0.134 \cdot kip$$

Tributary shear on the wall per plan dimensions

$$V_{wind} \coloneqq \left(p_{wind_wall_windward.A} - p_{wind_wall_leeward.A}\right) \cdot 4.5 \\ \text{ft} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_2}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor_3}\right) = 1.645 \cdot \\ \text{kip} \cdot \left(h_{floor_3} - h_{floor$$

Wind load


Project Location: 7657 14TH ST MEDINA, WA

Designer: NKH Engineering

 $h_t := 9 \cdot ft$

 $L_s := 10ft$

Wall height

First Segment:

 $w_s := 10ft$

Segment wall length

Aspect Ratio (Blocked Shear Wall)

$$\frac{h_t}{w_s} = 0.9 \qquad \qquad \text{check}_{ratio} := if \left(\frac{h_t}{w_s} > 3.5, \text{"NG"}, \text{"OK"} \right)$$

(WSP) := if
$$\left(\frac{h_t}{w_s} < 2.0, 1.0, 1.25 - 0.125 \cdot \frac{h_t}{w_s}\right)$$
 Aspect ratio factor

$$(WSP) = 1.0$$

Overturning Forces

$$V_{rf.w} := \left(0.6 \cdot V_{wind} \cdot \frac{w_s}{L_s}\right)$$

Wind shear load at top of wall (ASD)

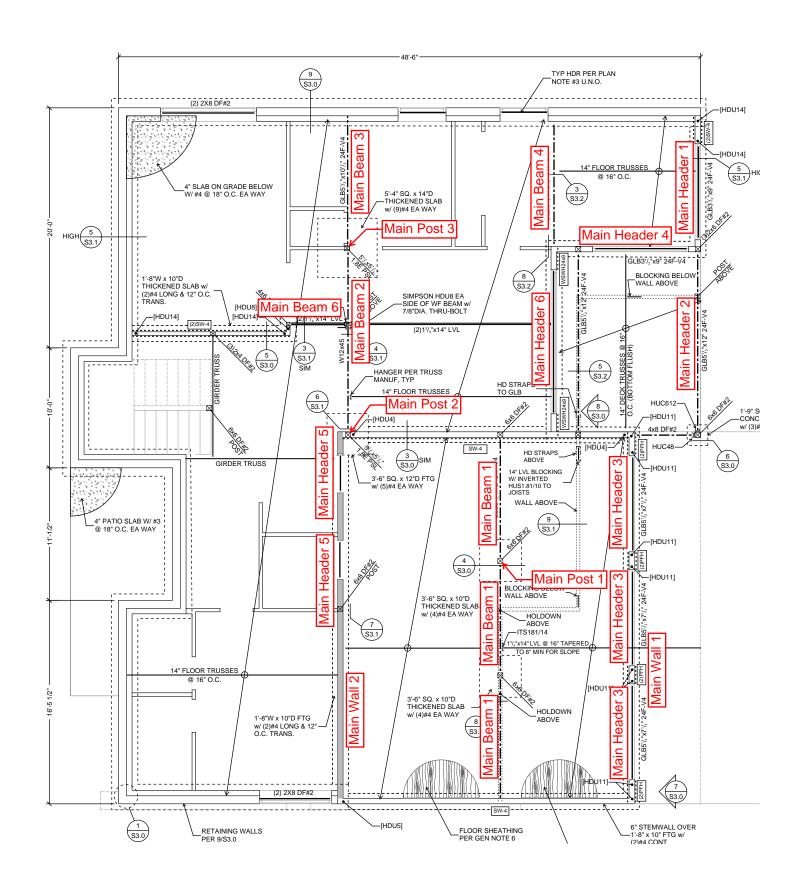
$$V_{rf.w} = 0.99 \cdot kip$$

$$V_{rf,E} := \left(0.7 \cdot V_{EQ} \cdot \frac{w_s}{L_s}\right)$$

Seismic shear load at top of wall (ASD)

$$V_{rf.E} = 0.09 \cdot kip$$

$$\mathsf{M}_{\mathrm{ot.w}} \coloneqq \mathsf{V}_{\mathrm{rf.w}} \cdot \mathsf{h}_{\mathsf{t}}$$

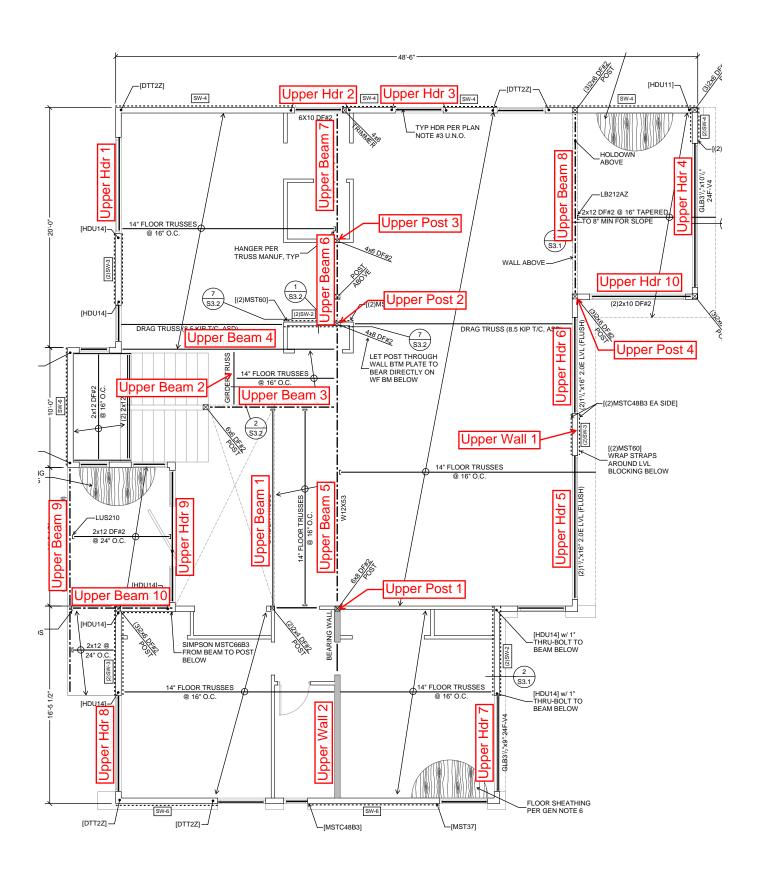

Overturning moment (ASD)

 $M_{ot.w} = 8.9 \cdot \text{kip} \cdot \text{ft}$

$$M_{ot.E} := V_{rf.E} \cdot h_t$$

Overturning moment (ASD)

 $M_{ot.E} = 0.8 \cdot \text{kip} \cdot \text{ft}$

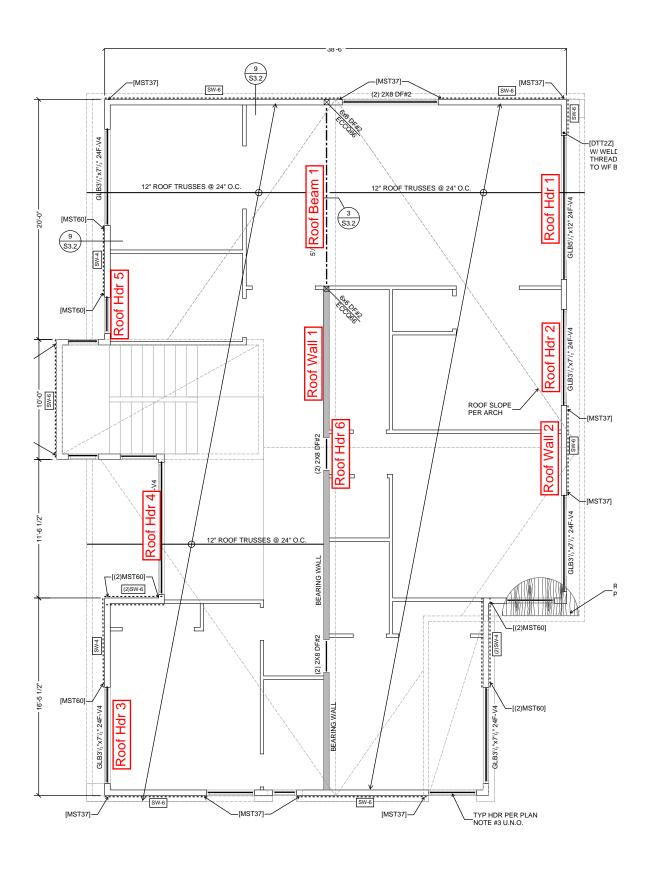


PROJECT: 3804 House

DESCRIPTION: Main Floor Framing Keyplan

BY: NKH DATE: 9/7/2023 JOB #: 22-112

S103



PROJECT: 3804 House

DESCRIPTION: Upper Floor Framing Keyplan

BY: NKH DATE: 9/7/2023 JOB #: 22-112

S104

PROJECT: 3804 House

DESCRIPTION: Roof Framing Keyplan

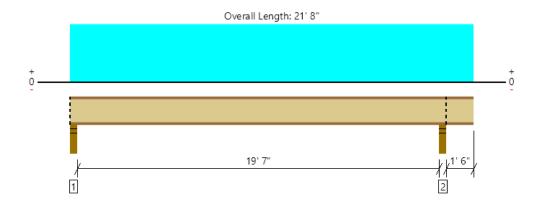
BY: NKH DATE: 9/7/2023 JOB #: 22-112

Roof			
Member Name	Results	Current Solution	Comments
Roof Truss 1	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC	
Roof Truss 2	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC	
Roof Truss 3	Failed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC	Left cantilever exceeds the maximum braced cantilever length of 5'.
Roof Header 1	Passed	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam	
Roof Header 2	Passed	1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam	
Roof Header 3	Passed	1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam	
Roof Header 4	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam	
Roof Header 5	Passed	2 piece(s) 2 x 6 DF No.2	
Roof Header 6	Passed	2 piece(s) 2 x 8 DF No.2	
Roof Beam 1	Passed	1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL	
Roof Post 1	Passed	1 piece(s) 6 x 6 DF No.2	
Roof Wall 1	Passed	1 piece(s) 2 x 4 DF No.2 @ 16" OC	
Roof Wall 2	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC	

Ft-IMED C-ft Ont	I-l- Ni-t
ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor					
Member Name	Results	Current Solution	Comments		
Upper Truss 1	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC			
Upper Truss 2	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC			
Upper Truss 3	Passed	1 piece(s) 14" TJI® 110 @ 16" OC			
Upper Truss 4	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC			
Upper Truss 5	Passed	1 piece(s) 2 x 12 DF No.2 @ 24" OC			
Upper Truss 6	Passed	1 piece(s) 2 x 12 DF No.2 @ 24" OC			
Upper Truss 7	Passed	1 piece(s) 2 x 12 DF No.2 @ 24" OC			
Upper Truss 8	Passed	1 piece(s) 11 7/8" TJI® 360 @ 16" OC			
Upper Truss 9	Passed	1 piece(s) 2 x 12 DF No.2 @ 16" OC			
Upper Joist 10	Passed	1 piece(s) 2 x 8 DF No.2 @ 16" OC			
Upper Beam 1	Passed	1 piece(s) 6 x 10 DF No.2			
Upper Beam 2	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam			
Upper Beam 3	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam			
Upper Beam 4	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam			
Upper Beam 5	Passed	1 piece(s) W12X53 (A992) ASTM Steel			
Upper Beam 6	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam			
Upper Beam 7	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam			
Upper Beam 8	Passed	1 piece(s) W10X39 (A992) ASTM Steel			
Upper Beam 9	Failed	2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL	Left cantilever exceeds the maximum braced cantilever length of 7'.		
Upper Beam 10	Failed	1 piece(s) 5 1/2" x 12" 24F-V8 DF Glulam	An excessive uplift of -5111 lbs at support located at 9' 1" failed this product.		
Upper Header 1	Passed	1 piece(s) 6 x 10 DF No.2			
Upper Header 2	Passed	1 piece(s) 6 x 10 DF No.2			
Upper Header 3	Passed	2 piece(s) 2 x 6 DF No.2			
Upper Header 4	Passed	1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam			
Upper Header 5	Passed	2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL			
Upper Header 6	Passed	1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL			
Upper Header 7	Passed	1 piece(s) 6 x 10 DF No.2			
Upper Header 8	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam			
Upper Header 9	Passed	1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam			
Upper Header 10	Passed	2 piece(s) 2 x 10 DF No.2			
Upper Wall 1	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC			
Upper Wall 2	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC			
Upper Post 1	Passed	1 piece(s) 6 x 8 DF No.2			
Upper Post 2	Failed	1 piece(s) 4 x 8 DF No.2			
Upper Post 3	Passed	1 piece(s) 4 x 6 DF No.2			
Upper Post 4	Passed	1 piece(s) 6 x 6 DF No.2			

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	


Main								
Member Name	Results	Current Solution	Comments					
Main Truss 1	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC						
Main Truss 2	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC						
Main Truss 3-2	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC						
Main Truss 4	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC						
Main Truss 5	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC						
Main Truss 6	Passed	1 piece(s) 11 7/8" TJI® 230 @ 16" OC						
Main Deck 1	Passed	1 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL @ 16" OC						
Main Beam 1	Passed	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam						
Main Beam 2	Passed	1 piece(s) W12X45 (A992) ASTM Steel						
Main Beam 3	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam						
Main Beam 4	Passed	1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam						
Main Beam 6	Passed	2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL						
Main Header 1	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam						
Main Header 2	Passed	1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam						
Main Header 3	Failed	1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam						
Main Header 4	Passed	1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam						
Main Header 5	Passed	2 piece(s) 2 x 6 DF No.2						
Main Header 6	Passed	1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL						
Main Wall 1	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC						
Main Wall 2	Passed	1 piece(s) 2 x 6 DF No.2 @ 16" OC						
Main Post 1	Passed	1 piece(s) 6 x 6 DF No.2						
Main Post 2	Passed	1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL						
Main Post 3	Passed	1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL						

Ft-IMED C-ft Ont	I-l- Ni-t
ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

MEMBER REPORT PASSED

Roof, Roof Truss 1 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	537 @ 2 1/2"	1708 (3.50")	Passed (31%)	1.15	1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	521 @ 3 1/2"	1903	Passed (27%)	1.15	1.0 D + 1.0 S (Alt Spans)
Moment (Ft-lbs)	2592 @ 10' 13/16"	4847	Passed (53%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.360 @ 10' 1 1/4"	0.660	Passed (L/661)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.574 @ 10' 1 3/16"	0.991	Passed (L/414)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- . Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

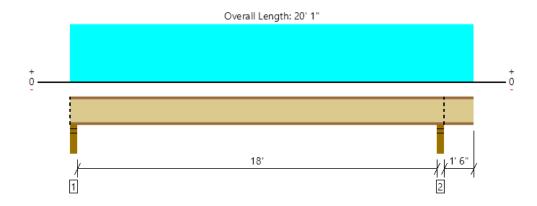
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.75"	201	269	336	537	Blocking
2 - Stud wall - SPF	3.50"	3.50"	3.50"	232	310	387	620	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 4" o/c	
Bottom Edge (Lu)	9' 7" o/c	

- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- •Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Load	Location	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 21' 8"	16"	15.0	20.0	25.0	Default Load


Weverhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

MEMBER REPORT PASSED

Roof, Roof Truss 2 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	494 @ 2 1/2"	1708 (3.50")	Passed (29%)	1.15	1.0 D + 1.0 S (Alt Spans)
Shear (lbs)	479 @ 3 1/2"	1903	Passed (25%)	1.15	1.0 D + 1.0 S (Alt Spans)
Moment (Ft-lbs)	2191 @ 9' 3 1/4"	4847	Passed (45%)	1.15	1.0 D + 1.0 S (Alt Spans)
Live Load Defl. (in)	0.261 @ 9' 3 3/4"	0.608	Passed (L/837)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.417 @ 9' 3 11/16"	0.911	Passed (L/525)		1.0 D + 1.0 S (Alt Spans)

System : Roof Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD Member Pitch : 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.75"	185	248	310	494	Blocking
2 - Stud wall - SPF	3.50"	3.50"	3.50"	217	289	361	578	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 9" o/c	
Bottom Edge (Lu)	9' 7" o/c	

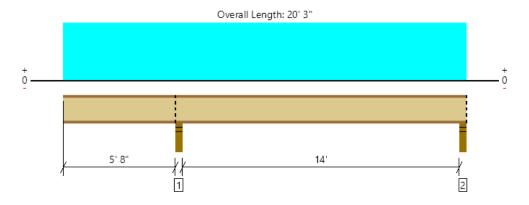
- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- •Maximum allowable bracing intervals based on applied load.

	Consider		Dead	Roof Live	Snow	
Vertical Load	Location	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 20' 1"	16"	15.0	20.0	25.0	Default Load

Weverhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


File Name: 22-112 S110

Roof, Roof Truss 3 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

Left cantilever exceeds the maximum braced cantilever length of 5'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	753 @ 5' 9 3/4"	2772 (3.50")	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Shear (lbs)	414 @ 5' 11 1/2"	1903	Passed (22%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	-901 @ 5' 9 3/4"	3635	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.086 @ 13' 2"	0.474	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)
Total Load Defl. (in)	0.127 @ 13' 3 5/16"	0.711	Passed (L/999+)		1.0 D + 1.0 S (Alt Spans)

System: Roof Member Type: Joist Building Use: Residential Building Code: IBC 2018 Design Methodology: ASD Member Pitch: 0/12

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Moment capacity over cantilever support 1 has been reduced by 25% to lessen the effects of buckling.
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	3.50"	282	376	470	753	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.75"	123	179	224	347	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

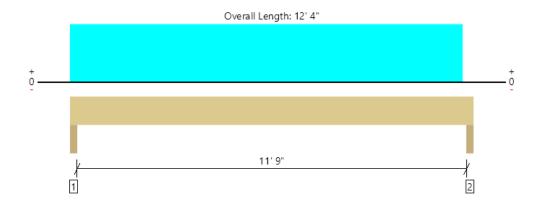
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 5" o/c	
Bottom Edge (Lu)	9' 2" o/c	

- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- •Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Load	Location	Spacing	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Uniform (PSF)	0 to 20' 3"	16"	15.0	20.0	25.0	Default Load

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

File Name: 22-112 **S111**

Roof, Roof Header 1 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2961 @ 2"	12513 (3.50")	Passed (24%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2342 @ 11' 1/2"	13409	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	8642 @ 6' 2"	30360	Passed (28%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.095 @ 6' 2"	0.300	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.157 @ 6' 2"	0.200	Passed (L/917)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

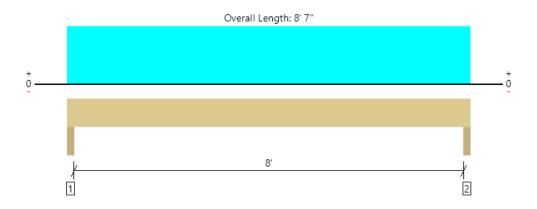
- Deflection criteria: LL (L/480) and TL (L/720).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 12'.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	В	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories	
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1172	1433	1790	2961	None	
2 - Trimmer - SPF	3 50"	3 50"	1 50"	1114	1357	1693	2808	None	

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 4" o/c	
Bottom Edge (Lu)	12' 4" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 4"	N/A	16.0			
1 - Uniform (PLF)	0 to 12'	N/A	174.0	232.5	290.3	Linked from: Roof Truss 1, Support 2


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Roof, Roof Header 2 1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1756 @ 2"	7963 (3.50")	Passed (22%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1381 @ 11"	5333	Passed (26%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	3481 @ 4' 3 1/2"	7547	Passed (46%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.119 @ 4' 3 1/2"	0.206	Passed (L/835)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.193 @ 4' 3 1/2"	0.412	Passed (L/514)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	674	866	1082	1756	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	674	866	1082	1756	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

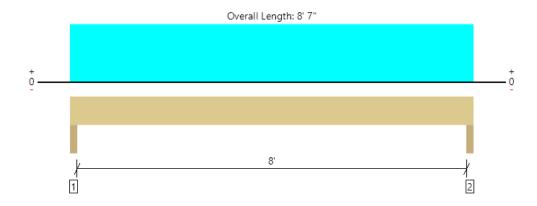
[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	6.4			
1 - Uniform (PLF)	0 to 8' 7"	N/A	150.8	201.8	252.0	Linked from: Roof Truss 1, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator


ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

File Name: 22-112 S113

Roof, Roof Header 3 1 piece(s) 3 1/2" x 7 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1621 @ 2"	7963 (3.50")	Passed (20%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	1275 @ 11"	5333	Passed (24%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	3213 @ 4' 3 1/2"	7547	Passed (43%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.109 @ 4' 3 1/2"	0.206	Passed (L/905)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.178 @ 4' 3 1/2"	0.412	Passed (L/557)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	В	Bearing Length			Loads to Su			
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	623	798	998	1621	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	623	798	998	1621	None

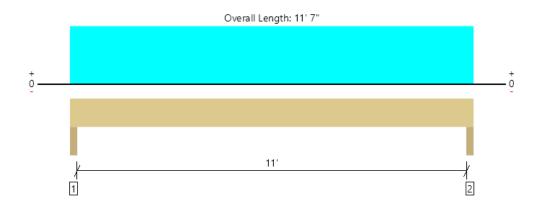
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	6.4			
1 - Uniform (PLF)	0 to 8' 7"	N/A	138.8	186.0	232.5	Linked from: Roof Truss 2, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

ForteWEB v3.6, Engine: V8.3.1.5, Data: V8.1.4.1 File Name: 22-112 S114

Roof, Roof Header 4 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3336 @ 2"	12513 (3.50")	Passed (27%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	2736 @ 1' 1/2"	10057	Passed (27%)	1.15	1.0 D + 1.0 S (All Spans)
Pos Moment (Ft-lbs)	9113 @ 5' 9 1/2"	17078	Passed (53%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.211 @ 5' 9 1/2"	0.281	Passed (L/639)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.345 @ 5' 9 1/2"	0.563	Passed (L/391)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

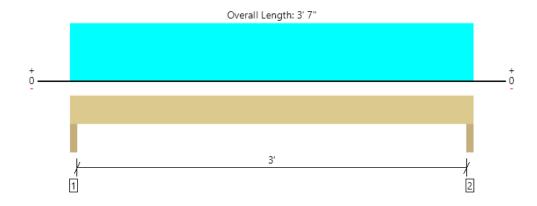
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1295	1633	2042	3336	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1295	1633	2042	3336	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 7" o/c	
Bottom Edge (Lu)	11' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 7"	N/A	12.0			
1 - Uniform (PLF)	0 to 11' 7"	N/A	211.5	282.0	352.5	Linked from: Roof Truss 3, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (RIm Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Roof, Roof Header 5 2 piece(s) 2 x 6 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	673 @ 2"	6563 (3.50")	Passed (10%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	391 @ 9"	2277	Passed (17%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	496 @ 1' 9 1/2"	1696	Passed (29%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.009 @ 1' 9 1/2"	0.081	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.014 @ 1' 9 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

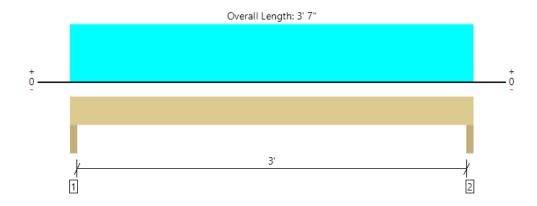
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	256	333	417	673	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	256	333	417	673	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 7" o/c	
Bottom Edge (Lu)	3' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 7"	N/A	4.2			
1 - Uniform (PLF)	0 to 3' 7"	N/A	138.8	186.0	232.5	Linked from: Roof Truss 2, Support 1

Weverhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Roof, Roof Header 6 2 piece(s) 2 x 8 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1508 @ 2"	6563 (3.50")	Passed (23%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	754 @ 10 3/4"	3002	Passed (25%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	1111 @ 1' 9 1/2"	2720	Passed (41%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.009 @ 1' 9 1/2"	0.081	Passed (L/999+)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.014 @ 1' 9 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

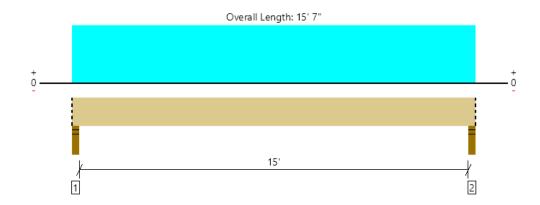
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	572	750	937	1508	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	572	750	937	1508	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 7" o/c	
Bottom Edge (Lu)	3' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
0 - Self Weight (PLF)	0 to 3' 7"	N/A	5.5			
1 - Uniform (PLF)	0 to 3' 7"	N/A	150.8	201.8	252.0	Linked from: Roof Truss 1, Support 1
2 - Uniform (PLF)	0 to 3' 7"	N/A	162.8	216.8	270.8	Linked from: Roof Truss 2, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Roof, Roof Beam 1 1 piece(s) 5 1/4" x 11 7/8" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6668 @ 2"	7809 (3.50")	Passed (85%)		1.0 D + 1.0 S (All Spans)
Shear (lbs)	5571 @ 1' 3 3/8"	13861	Passed (40%)	1.15	1.0 D + 1.0 S (All Spans)
Moment (Ft-lbs)	24876 @ 7' 9 1/2"	34332	Passed (72%)	1.15	1.0 D + 1.0 S (All Spans)
Live Load Defl. (in)	0.420 @ 7' 9 1/2"	0.508	Passed (L/435)		1.0 D + 1.0 S (All Spans)
Total Load Defl. (in)	0.688 @ 7' 9 1/2"	0.762	Passed (L/266)		1.0 D + 1.0 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	2.99"	2594	3261	4073	6668	Blocking
2 - Stud wall - SPF	3.50"	3.50"	2.99"	2594	3261	4073	6668	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

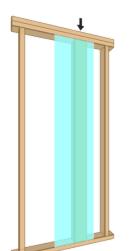
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 7" o/c	
Bottom Edge (Lu)	15' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 7"	N/A	19.5			
1 - Uniform (PLF)	0 to 15' 7" (Front)	N/A	150.8	201.8	252.0	Linked from: Roof Truss 1, Support 1
2 - Uniform (PLF)	0 to 15' 7" (Front)	N/A	162.8	216.8	270.8	Linked from: Roof Truss 2, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Tributary Width: 1'

MEMBER REPORT Roof, Roof Post 1

1 piece(s) 6 x 6 DF No.2

Drawing is Conceptual

Design Results Actual Allowed Result LDF Load: Combination Slenderness 25 50 Passed (51%) Compression (lbs) 6667 14197 Passed (47%) 1.15 1.0 D + 1.0 S Plate Bearing (lbs) 12856 Passed (52%) 1.0 D + 1.0 S 6667 1.0 D + 0.6 W Lateral Reaction (lbs) 84 1.60 5485 Passed (1%) Lateral Shear (lbs) 78 1.60 1.0 D + 0.6 WLateral Moment (ft-lbs) 245 @ mid-span 2773 Passed (9%) 1.60 1.0 D + 0.6 W

Passed (L/3321)

Passed (23%)

Member Height: 11' 7 1/2"

• Lateral deflection criteria: Wind (L/120)

Wall Height: 12'

Total Deflection (in)

Bending/Compression

- . Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

1.16

1

Supports	Туре	Material
Тор	Dbl 2X	Spruce-Pine-Fir
Base	2X	Spruce-Pine-Fir

0.04 @ mid-span

0.23

Member Type : Column Building Code : IBC 2018 Design Methodology : ASD

System : Wall

1.0 D + 0.6 W

1.0 D + 0.45 W + 0.75 L + 0.75 S

1.60

Max Unbraced Length	Comments
1'	

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

[•] Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

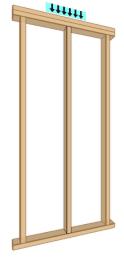
		Dead	Roof Live	Snow	
Vertical Loads	Tributary Width	(0.90)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (lb)	N/A	-	=	-	
2 - Point (lb)	N/A	2594	3261	4073	Linked from: Roof Beam 1, Support 2

			Wind	
Lateral Load	Location	Tributary Width	(1.60)	Comments
1 - Uniform (PSF)	Full Length	1'	24.1	

[•] ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


[•] IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

PASSED

Roof, Roof Wall 1 1 piece(s) 2 x 4 DF No.2 @ 16" OC

Wall Height: 12' Member Height: 11' 7 1/2" O. C. Spacing: 16.00"

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	40	50	Passed (80%)		
Compression (lbs)	1115	1517	Passed (73%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	1115	2789	Passed (40%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

- · Lateral deflection criteria: Wind (L/120)
- . Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- A bearing area factor of 1.25 has been applied to base plate bearing capacity.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.

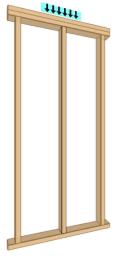
Supports	Туре	Material
Тор	Dbl 2X	Spruce-Pine-Fir
Base	2X	Spruce-Pine-Fir

System : Wall Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD

Max Unbraced Length	Comments
1'	

Vertical Loads	Spacing	Dead (0.90)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (PLF)	16.00"	150.8	201.8		Linked from: Roof Truss 1, Support 1
2 - Point (PLF)	16.00"	162.8	216.8	270.8	Linked from: Roof Truss 2, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Roof, Roof Wall 2 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12' Member Height: 11' 7 1/2" O. C. Spacing: 16.00"

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	619	5432	Passed (11%)	1.15	1.0 D + 1.0 S
Plate Bearing (lbs)	619	4383	Passed (14%)		1.0 D + 1.0 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

- · Lateral deflection criteria: Wind (L/120)
- · Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- A bearing area factor of 1.25 has been applied to base plate bearing capacity.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material
Тор	Dbl 2X	Spruce-Pine-Fir
Base	2X	Spruce-Pine-Fir

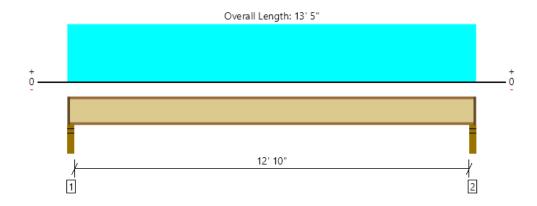
Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD

System : Wall

Max Unbraced Length	Comments
1'	

Vertical Load	Spacing	Dead (0.90)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (PLF)	16.00"	174.0	232.5	200.3	Linked from: Roof Truss 1, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Truss 1 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	484 @ 2 1/2"	1183 (2.25")	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	471 @ 3 1/2"	1655	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1549 @ 6' 8 1/2"	4215	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.102 @ 6' 8 1/2"	0.325	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.140 @ 6' 8 1/2"	0.650	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	56	40	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	134	358	492	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	134	358	492	1 1/4" Rim Board

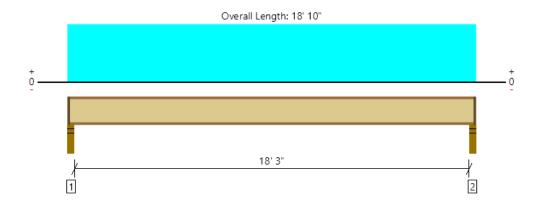
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6' 11" o/c	
Bottom Edge (Lu)	13' 3" o/c	

[•]TJI joists are only analyzed using Maximum Allowable bracing solutions.

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 13' 5"	16"	15.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Truss 2 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	683 @ 2 1/2"	1183 (2.25")	Passed (58%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	669 @ 3 1/2"	1655	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3109 @ 9' 5"	4215	Passed (74%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.368 @ 9' 5"	0.460	Passed (L/600)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.507 @ 9' 5"	0.921	Passed (L/436)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	39	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	188	502	691	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	188	502	691	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

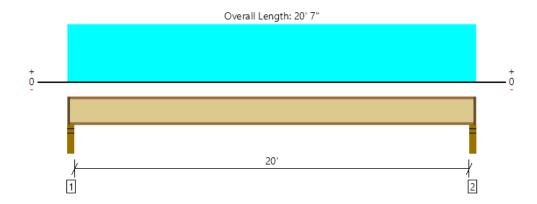
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 9" o/c	
Bottom Edge (Lu)	18' 8" o/c	

[•]TJI joists are only analyzed using Maximum Allowable bracing solutions.

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 18' 10"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Truss 3 1 piece(s) 14" TJI ® 110 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	747 @ 2 1/2"	1041 (2.25")	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	733 @ 3 1/2"	1860	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3728 @ 10' 3 1/2"	3740	Passed (100%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.448 @ 10' 3 1/2"	0.504	Passed (L/540)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.616 @ 10' 3 1/2"	1.008	Passed (L/393)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	35	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	206	549	755	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	206	549	755	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

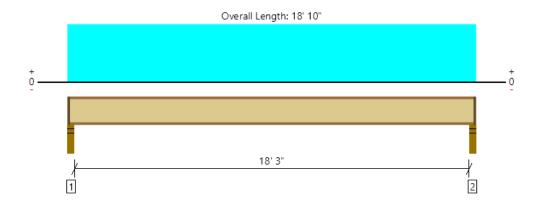
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 1" o/c	
Bottom Edge (Lu)	20' 5" o/c	

[•]TJI joists are only analyzed using Maximum Allowable bracing solutions.

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 20' 7"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Truss 4 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	683 @ 2 1/2"	1183 (2.25")	Passed (58%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	669 @ 3 1/2"	1655	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3109 @ 9' 5"	4215	Passed (74%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.368 @ 9' 5"	0.460	Passed (L/600)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.507 @ 9' 5"	0.921	Passed (L/436)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	39	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	188	502	691	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	188	502	691	1 1/4" Rim Board

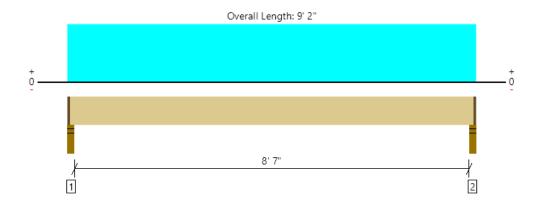
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 9" o/c	
Bottom Edge (Lu)	18' 8" o/c	

- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- $\bullet \mbox{Maximum allowable bracing intervals based on applied load.} \\$

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 18' 10"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Truss 5 1 piece(s) 2 x 12 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	672 @ 2 1/2"	1434 (2.25")	Passed (47%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	503 @ 1' 2 3/4"	2025	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1436 @ 4' 7"	2729	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.056 @ 4' 7"	0.219	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.069 @ 4' 7"	0.438	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	138	550	688	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	138	550	688	1 1/4" Rim Board

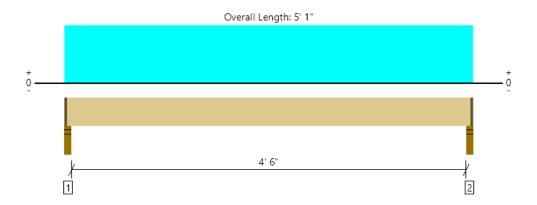
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' o/c	
Bottom Edge (Lu)	9' o/c	

 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 9' 2"	24"	15.0	60.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Truss 6 1 piece(s) 2 x 12 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	366 @ 2 1/2"	1434 (2.25")	Passed (25%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	197 @ 1' 2 3/4"	2025	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	408 @ 2' 6 1/2"	2729	Passed (15%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.004 @ 2' 6 1/2"	0.117	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.006 @ 2' 6 1/2"	0.233	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	76	305	381	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	76	305	381	1 1/4" Rim Board

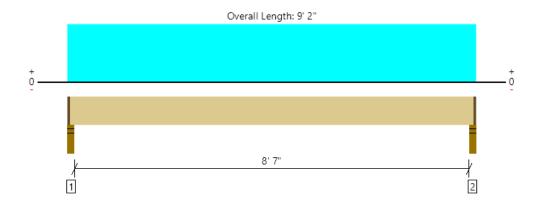
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 11" o/c	
Bottom Edge (Lu)	4' 11" o/c	

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load. } \\$

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 5' 1"	24"	15.0	60.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Truss 7 1 piece(s) 2 x 12 DF No.2 @ 24" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	493 @ 2 1/2"	1434 (2.25")	Passed (34%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	369 @ 1' 2 3/4"	2025	Passed (18%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1053 @ 4' 7"	2729	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.037 @ 4' 7"	0.219	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.051 @ 4' 7"	0.438	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

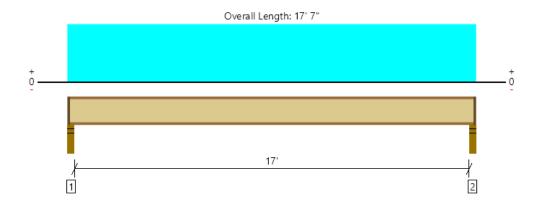
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	138	367	504	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	138	367	504	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' o/c	
Bottom Edge (Lu)	9' o/c	

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load.}$

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 9' 2"	24"	15.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Truss 8 1 piece(s) 11 7/8" TJI ® 360 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	637 @ 2 1/2"	1202 (2.25")	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	623 @ 3 1/2"	1705	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2701 @ 8' 9 1/2"	6180	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.245 @ 8' 9 1/2"	0.429	Passed (L/841)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.337 @ 8' 9 1/2"	0.858	Passed (L/611)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	46	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	176	469	645	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	176	469	645	1 1/4" Rim Board

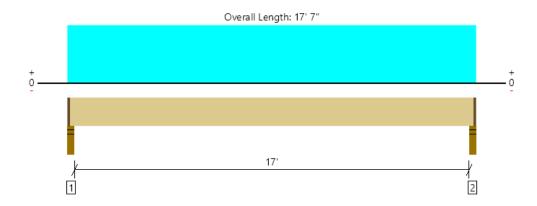
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 9" o/c	
Bottom Edge (Lu)	17' 5" o/c	

[•]TJI joists are only analyzed using Maximum Allowable bracing solutions.

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 17' 7"	16"	15.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Truss 9 1 piece(s) 2 x 12 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	637 @ 2 1/2"	1434 (2.25")	Passed (44%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	555 @ 1' 2 3/4"	2025	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2701 @ 8' 9 1/2"	2729	Passed (99%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.366 @ 8' 9 1/2"	0.429	Passed (L/563)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.503 @ 8' 9 1/2"	0.858	Passed (L/409)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	176	469	645	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.50"	176	469	645	1 1/4" Rim Board

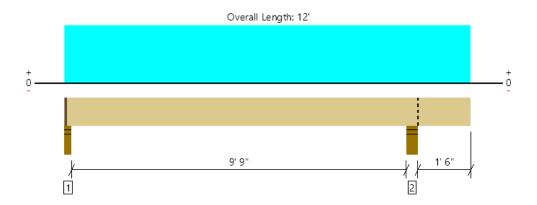
[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11" o/c	
Bottom Edge (Lu)	17' 5" o/c	

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load. } \\$

			Dead	Floor Live	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 17' 7"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Joist 10 1 piece(s) 2 x 8 DF No.2 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Describe	Astrol @ Lasation	Allannad	Describ	LDE	Lord Combination (Bettern)
Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	534 @ 2 1/2"	1434 (2.25")	Passed (37%)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Shear (lbs)	435 @ 9' 5 1/4"	1305	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1251 @ 5' 2 1/2"	1360	Passed (92%)	1.00	1.0 D + 1.0 L (Alt Spans)
Live Load Defl. (in)	0.255 @ 5' 2 13/16"	0.252	Passed (L/474)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.311 @ 5' 2 11/16"	0.503	Passed (L/388)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
TJ-Pro™ Rating	N/A	N/A	N/A		N/A

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.
- Applicable calculations are based on NDS.
- No composite action between deck and joist was considered in analysis.

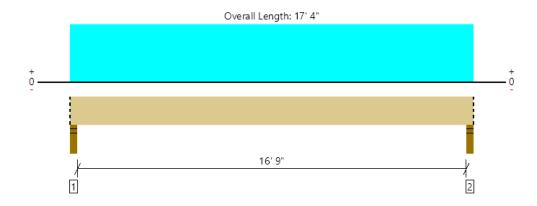
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	102	419/-4	172	545	1 1/4" Rim Board
2 - Stud wall - SPF	5.50"	5.50"	1.50"	138	553	230	725	Blocking

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' o/c	
Bottom Edge (Lu)	11' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Load	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 12'	16"	15.0	60.0	25.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Beam 1 1 piece(s) 6 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1155 @ 2"	8181 (3.50")	Passed (14%)		1.0 D (All Spans)
Shear (lbs)	1010 @ 1' 1"	5330	Passed (19%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	4813 @ 8' 8"	5429	Passed (89%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.000 @ 0	0.425	Passed (2L/999+)		1.0 D (All Spans)
Total Load Defl. (in)	0.490 @ 8' 8"	0.850	Passed (L/416)		1.0 D (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to		
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	1155	1155	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	1155	1155	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	17' 4" o/c	
Bottom Edge (Lu)	17' 4" o/c	

Maximum allowable bracing intervals based on applied load.

			Dead	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	Comments
0 - Self Weight (PLF)	0 to 17' 4"	N/A	13.2	
1 - Uniform (PLF)	0 to 17' 4" (Front)	N/A	120.0	Floor

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Beam 2 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1323 @ 2"	8181 (3.50")	Passed (16%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	789 @ 1' 1/2"	8745	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	1495 @ 2' 7"	14850	Passed (10%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.007 @ 2' 7"	0.121	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.010 @ 2' 7"	0.242	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 4' 10".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	384	939	1323	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	384	939	1323	Blocking

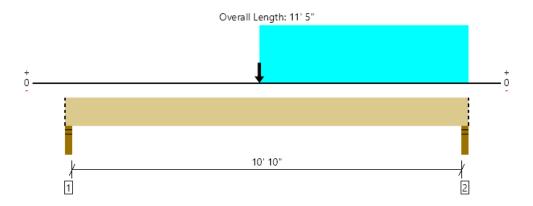
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 2" o/c	
Bottom Edge (Lu)	5' 2" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 5' 2"	N/A	12.0		
1 - Uniform (PSF)	0 to 5' 2" (Front)	4' 6"	15.0	40.0	Floor
2 - Uniform (PLF)	0 to 5' 2" (Front)	N/A	69.0	183.5	Linked from: Upper Truss 7, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Beam 3 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2765 @ 11' 3"	8181 (3.50")	Passed (34%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2249 @ 10' 4 1/2"	8745	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	7257 @ 5' 10 1/16"	14850	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.106 @ 6' 1 3/16"	0.277	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.246 @ 5' 11"	0.554	Passed (L/541)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 1".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	865	525	1389	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	1209	1557	2765	Blocking

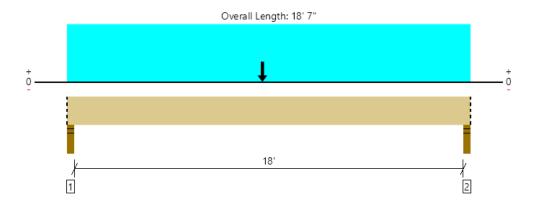
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 5" o/c	
Bottom Edge (Lu)	11' 5" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 5"	N/A	12.0		
1 - Uniform (PLF)	5' 6" to 11' 5" (Front)	N/A	132.0	351.8	Linked from: Upper Truss 8, Support 2
2 - Point (lb)	5' 6" (Front)	N/A	1155	-	Linked from: Upper Beam 1, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Beam 4 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1817 @ 2"	8181 (3.50")	Passed (22%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1674 @ 1' 2"	10203	Passed (16%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	11106 @ 9'	20213	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.215 @ 9' 2 9/16"	0.456	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.622 @ 9' 3"	0.913	Passed (L/352)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 18' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	3.50"	1.50"	1332	485	1817	Blocking
2 - Stud wall - SPF	3.50"	3.50"	1.50"	1320	454	1774	Blocking

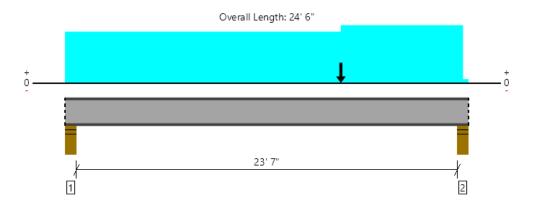
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	18' 7" o/c	
Bottom Edge (Lu)	18' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 18' 7"	N/A	14.0		
1 - Uniform (PLF)	0 to 18' 7" (Front)	N/A	108.0	-	Floor
2 - Point (lb)	9' (Front)	N/A	384	939	Linked from: Upper Beam 2, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Beam 5 1 piece(s) W12X53 (A992) ASTM Steel

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	19274 @ 24' 2"	23375 (5.50")	Passed (82%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	19011 @ 24' 1/2"	83490	Passed (23%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	108987 @ 12' 11 9/16"	139286	Passed (78%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.468 @ 12' 4 3/4"	0.596	Passed (L/611)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.908 @ 12' 4 5/8"	1.192	Passed (L/315)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Bearing reinforcement may be required for support located at 24' 2".
- Applicable calculations are based on ANSI/AISC 360-16.
- A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

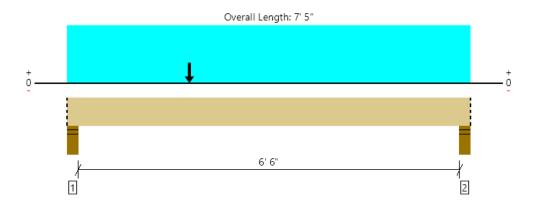
	Bearing Length				Loads				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	5.50"	8602	5740	5127	6404	17710	Blocking
2 - Stud wall - SPF	5.50"	5.50"	5.50"	9255	7128	4987	6229	19274	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead Floor Live Roof Live		Snow		
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 24' 6"	N/A	53.0				
1 - Uniform (PLF)	0 to 24' 6"	N/A	144.0	-	-	-	Floor
2 - Uniform (PLF)	0 to 24' 2"	N/A	150.8	-	201.8	252.0	Linked from: Roof Truss 1, Support 1
3 - Uniform (PLF)	0 to 24' 2"	N/A	162.8	-	216.8	270.8	Linked from: Roof Truss 2, Support 2
4 - Uniform (PLF)	0 to 24' 2"	N/A	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 1
5 - Uniform (PLF)	16' 9" to 24' 2"	N/A	69.0	183.5	-	-	Linked from: Upper Truss 7, Support 2
6 - Point (lb)	16' 9"	N/A	1209	1557	-	-	Linked from: Upper Beam 3, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Beam 6 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7378 @ 4"	12856 (5.50")	Passed (57%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	6292 @ 1' 2 1/2"	10057	Passed (63%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Pos Moment (Ft-lbs)	11915 @ 2' 3"	17078	Passed (70%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.089 @ 3' 6 5/8"	0.169	Passed (L/911)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.149 @ 3' 6 7/16"	0.338	Passed (L/542)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 6' 9".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	3.16"	2998	2923	2335	2916	7378	Blocking
2 - Stud wall - SPF	5.50"	5.50"	2.11"	1877	2923	926	1157	4937	Blocking

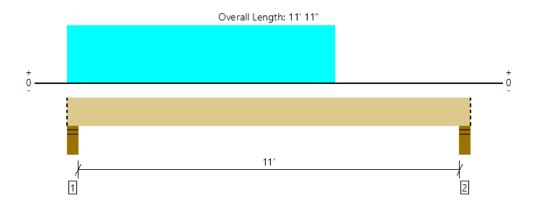
[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 5" o/c	
Bottom Edge (Lu)	7' 5" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 7' 5"	N/A	12.0				
1 - Point (lb)	2' 3" (Top)	N/A	2594	-	3261	4073	Linked from: Roof Post 1, Support 1
2 - Uniform (PLF)	0 to 7' 5" (Front)	N/A	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 1
3 - Uniform (PLF)	0 to 7' 5" (Front)	N/A	141.0	376.5	-	-	Linked from: Upper Truss 4, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Beam 7 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5893 @ 4"	12856 (5.50")	Passed (46%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4430 @ 1' 4"	10203	Passed (43%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	13916 @ 5' 4 7/16"	20213	Passed (69%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.227 @ 5' 9 3/16"	0.281	Passed (L/594)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.318 @ 5' 9 1/4"	0.563	Passed (L/425)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.52"	1668	4226	5893	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.50"	839	2015	2854	Blocking

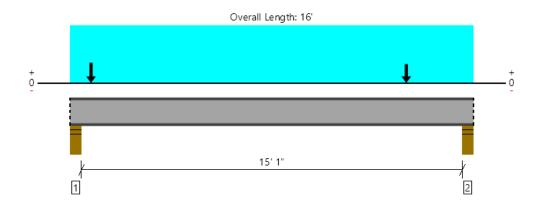
[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 11" o/c	
Bottom Edge (Lu)	11' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 11"	N/A	14.0		
1 - Uniform (PLF)	0 to 7' 11" (Front)	N/A	154.5	411.8	Linked from: Upper Truss 3, Support 1
2 - Uniform (PLF)	0 to 7' 11" (Front)	N/A	141.0	376.5	Linked from: Upper Truss 4, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Beam 8 1 piece(s) W10X39 (A992) ASTM Steel

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern) [Group]
Member Reaction (lbs)	11237 @ 4"	18677 (5.50")	Passed (60%)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Shear (lbs)	10754 @ 5 1/2"	62496	Passed (17%)		1.0 D + 0.75 L + 0.75 S (All Spans) [1]
Moment (Ft-lbs)	35104 @ 8' 1 3/8"	95863	Passed (37%)		1.0 D + 1.0 L (All Spans) [1]
Live Load Defl. (in)	0.149 @ 8'	0.383	Passed (L/999+)		1.0 D + 1.0 L (All Spans) [1]
Total Load Defl. (in)	0.247 @ 8' 3/8"	0.256	Passed (L/745)		1.0 D + 1.0 L (All Spans) [1]

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/720).
- Applicable calculations are based on ANSI/AISC 360-16.
- A lateral-torsional buckling factor (Сь) of 1.0 has been assumed.

	Е	Bearing Length			Loads				
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	5.50"	4615	5808	1593	3021	11237	Blocking
2 - Stud wall - SPF	5.50"	5.50"	5.50"	4295	5808	1197	2526	10545	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

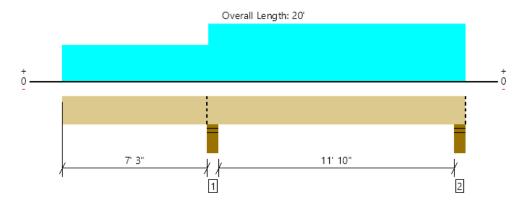
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 16'	N/A	39.0				
1 - Uniform (PLF)	0 to 16'	N/A	144.0	-	-	-	Floor
2 - Point (lb)	10"	N/A	1172	-	1433	1790	Linked from: Roof Header 1, Support 1
3 - Point (lb)	13' 4"	N/A	1114	-	1357	1693	Linked from: Roof Header 1, Support 2
4 - Uniform (PLF)	0 to 16'	N/A	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 2
5 - Uniform (PLF)	0 to 16'	N/A	76.5	314.3/-3.0	-	129.0	Linked from: Upper Truss 10, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		



Upper Floor, Upper Beam 9 2 piece(s) 1 3/4" x 11 7/8" 2.0E Microllam® LVL

Left cantilever exceeds the maximum braced cantilever length of 7'.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5329 @ 7' 5 3/4"	8181 (5.50")	Passed (65%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2718 @ 8' 8 3/8"	7897	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-7685 @ 7' 5 3/4"	13386	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.347 @ 0	0.374	Passed (2L/518)		1.0 D + 1.0 L (Alt Spans)
Total Load Defl. (in)	0.472 @ 0	0.748	Passed (2L/380)		1.0 D + 1.0 L (Alt Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Overhang deflection criteria: LL (2L/480) and TL (2L/240).
- Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- Moment capacity over cantilever support 1 has been reduced by 25% to lessen the effects of buckling.

	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	3.58"	2134	3195	5329	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.66"	704	1767/-350	2471	Blocking

[·] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	20' o/c	
Bottom Edge (Lu)	19' 5" o/c	

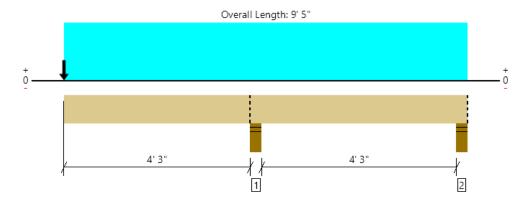
[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Lagation (Sida)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
vertical Loads	Location (Side)	Tributary Width	(0.70)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 20'	N/A	12.1		
1 - Uniform (PLF)	0 to 20' (Front)	N/A	72.0	-	Floor
2 - Uniform (PLF)	7' 3" to 20' (Front)	N/A	69.0	275.0	Linked from: Upper Truss 5, Support 1
3 - Uniform (PLF)	0 to 7' 3" (Front)	N/A	38.0	152.5	Linked from: Upper Truss 6, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		



Upper Floor, Upper Beam 10 1 piece(s) 5 1/2" x 12" 24F-V8 DF Glulam Uplift forces resolved
w/ strapping from beam to post below

FAHED

An excessive uplift of -5111 lbs at support located at 9' 1" failed this product.

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	11947 @ 4' 5 3/4"	12856 (5.50")	Passed (93%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	5849 @ 3' 3"	11660	Passed (50%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	0 @ N/A	N/A	Passed (N/A)		N/A
Neg Moment (Ft-lbs)	-25475 @ 4' 5 3/4"	26400	Passed (96%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.235 @ 0	0.299	Passed (2L/456)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.412 @ 0	0.448	Passed (2L/260)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Left cantilever length exceeds 1/3 member length or 1/2 back span length. Additional bracing should be considered.
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical negative moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 9' 1".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- Applicable calculations are based on NDS.

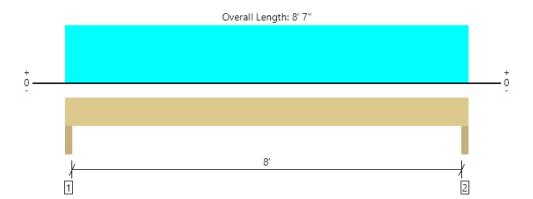
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	5.11"	5644	6303	11947	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.50"	-2003	-3108	-5111	Blocking

Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	9' 5" o/c	
Bottom Edge (Lu)	9' 5" o/c	

[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location (Side)	Tributary Width	Dead (0.90)	Floor Live (1.00)	Comments
0 - Self Weight (PLF)	0 to 9' 5"	N/A	16.0		
1 - Uniform (PLF)	0 to 9' 5" (Front)	N/A	144.0	-	Floor
2 - Point (lb)	0 (Front)	N/A	2134	3195	Linked from: Upper Beam 9, Support 1


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Header 1 1 piece(s) 6 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2896 @ 2"	12031 (3.50")	Passed (24%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2165 @ 1' 1"	5922	Passed (37%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5741 @ 4' 3 1/2"	6032	Passed (95%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.077 @ 4' 3 1/2"	0.206	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.138 @ 4' 3 1/2"	0.412	Passed (L/719)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- Applicable calculations are based on NDS.

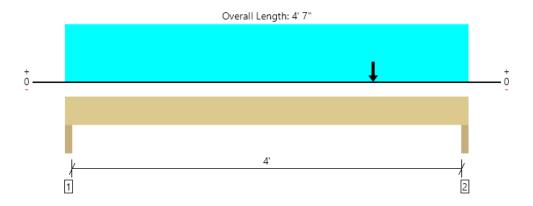
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1280	1616	2896	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1280	1616	2896	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	13.2		
1 - Uniform (PLF)	0 to 8' 7"	N/A	144.0	-	Default Load
2 - Uniform (PLF)	0 to 8' 7"	N/A	141.0	376.5	Linked from: Upper Truss 4, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Header 2 1 piece(s) 6 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	6634 @ 4' 5"	12031 (3.50")	Passed (55%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	6464 @ 3' 6"	6810	Passed (95%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	5991 @ 3' 6"	6937	Passed (86%)	1.15	1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.015 @ 2' 6 3/8"	0.106	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.029 @ 2' 6 3/16"	0.213	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- · Applicable calculations are based on NDS.

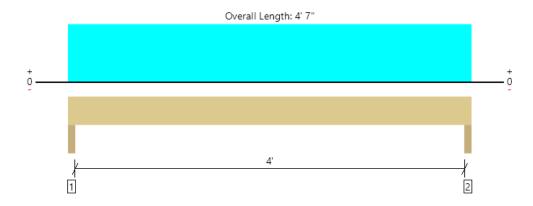
	Bearing Length		Loads to Supports (lbs)						
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1101	435	703	878	2086	None
2 - Trimmer - SPF	3.50"	3.50"	1.93"	3053	1580	2558	3195	6634	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 7" o/c	
Bottom Edge (Lu)	4' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 4' 7"	N/A	13.2				
1 - Uniform (PLF)	0 to 4' 7"	N/A	144.0	-	-	-	Default Load
2 - Point (lb)	3' 6"	N/A	2594	-	3261	4073	Linked from: Roof Post 1, Support 1
3 - Point (lb)	3' 6"	N/A	839	2015	-		Linked from: Upper Beam 7, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Header 3 2 piece(s) 2 x 6 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	670 @ 2"	6563 (3.50")	Passed (10%)		1.0 D (All Spans)
Shear (lbs)	450 @ 9"	1782	Passed (25%)	0.90	1.0 D (All Spans)
Moment (Ft-lbs)	660 @ 2' 3 1/2"	1327	Passed (50%)	0.90	1.0 D (All Spans)
Live Load Defl. (in)	0.000 @ 0	0.106	Passed (2L/999+)		1.0 D (All Spans)
Total Load Defl. (in)	0.032 @ 2' 3 1/2"	0.213	Passed (L/999+)		1.0 D (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

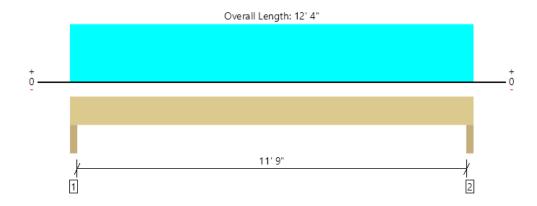
	Bearing Length			Loads to		
Supports	Total	Available	Required	Dead	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	670	670	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	670	670	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 7" o/c	
Bottom Edge (Lu)	4' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	
Vertical Loads	Location	Tributary Width	(0.90)	Comments
0 - Self Weight (PLF)	0 to 4' 7"	N/A	4.2	
1 - Uniform (PLF)	0 to 4' 7"	N/A	288.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Header 4 1 piece(s) 3 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3409 @ 2"	7963 (3.50")	Passed (43%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2636 @ 1' 2"	6493	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	9489 @ 6' 2"	12863	Passed (74%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.338 @ 6' 2"	0.400	Passed (L/426)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.424 @ 6' 2"	0.600	Passed (L/339)		1.0 D + 0.75 L + 0.75 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 12'.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

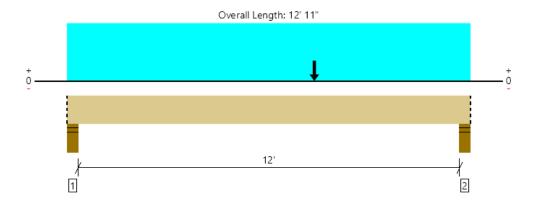
	В	Bearing Length			Loads to Sup			
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	693	2558	1064	3409	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	693	2558	1064	3409	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 4" o/c	
Bottom Edge (Lu)	12' 4" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 4"	N/A	8.9			
1 - Uniform (PLF)	0 to 12' 4"	N/A	103.5	414.8	172.5	Linked from: Upper Truss 10, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Header 5 2 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5110 @ 12' 7"	8181 (5.50")	Passed (62%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3808 @ 11' 1 1/2"	10640	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	15247 @ 6' 9 3/4"	31114	Passed (49%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.103 @ 6' 5 1/2"	0.306	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.203 @ 6' 6 1/16"	0.204	Passed (L/726)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/720).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	В	earing Lengt	th	Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	3.33"	2290	2659	330	412	4949	Blocking
2 - Stud wall - SPF	5.50"	5.50"	3.44"	2451	2659	536	670	5110	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 9" o/c	
Bottom Edge (Lu)	12' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 12' 11"	N/A	16.3				
1 - Uniform (PLF)	0 to 12' 11" (Front)	N/A	144.0	-	-	-	Floor
2 - Point (lb)	7' 11" (Top)	N/A	674	-	866	1082	Linked from: Roof Header 2, Support 2
3 - Uniform (PLF)	0 to 12' 11" (Front)	N/A	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Header 6 1 piece(s) 1 3/4" x 16" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3038 @ 4"	4091 (5.50")	Passed (74%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1794 @ 1' 9 1/2"	5320	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	5672 @ 4' 4 1/2"	15557	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.047 @ 4' 4 1/2"	0.202	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.079 @ 4' 4 1/2"	0.404	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	4.08"	1237	1801	3038	Blocking
2 - Stud wall - SPF	5.50"	5.50"	4.08"	1237	1801	3038	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 9" o/c	
Bottom Edge (Lu)	8' 9" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 9"	N/A	8.2		
1 - Uniform (PLF)	0 to 8' 9" (Front)	N/A	120.0	-	Floor
2 - Uniform (PLF)	0 to 8' 9" (Front)	N/A	154.5	411.8	Linked from: Upper Truss 3, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Header 7 1 piece(s) 6 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2346 @ 4"	12856 (5.50")	Passed (18%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1688 @ 1' 3"	5922	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	4477 @ 4' 5 1/2"	6032	Passed (74%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.055 @ 4' 5 1/2"	0.206	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.107 @ 4' 5 1/2"	0.412	Passed (L/922)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Lumber grading provisions must be extended over the length of the member per NDS 4.2.5.5.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	1.50"	1149	1197	2346	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.50"	1149	1197	2346	Blocking

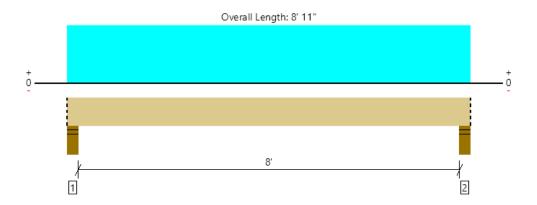
[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 11" o/c	
Bottom Edge (Lu)	8' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 11"	N/A	13.2		
1 - Uniform (PLF)	0 to 8' 11" (Front)	N/A	144.0	-	Floor
2 - Uniform (PLF)	0 to 8' 11" (Front)	N/A	100.5	268.5	Linked from: Upper Truss 1, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Header 8 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2983 @ 4"	8181 (5.50")	Passed (36%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2175 @ 1' 2 1/2"	5565	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	5693 @ 4' 5 1/2"	9450	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.103 @ 4' 5 1/2"	0.206	Passed (L/966)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.182 @ 4' 5 1/2"	0.412	Passed (L/543)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.01"	1305	1679	2983	Blocking
2 - Stud wall - SPF	5.50"	5.50"	2.01"	1305	1679	2983	Blocking

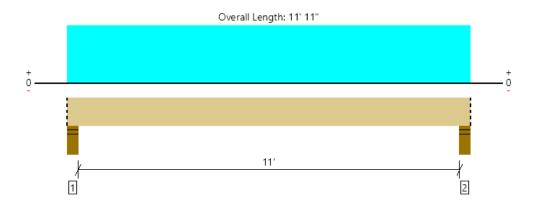
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 11" o/c	
Bottom Edge (Lu)	8' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 11"	N/A	7.7		
1 - Uniform (PLF)	0 to 8' 11" (Front)	N/A	144.0	-	Floor
2 - Uniform (PLF)	0 to 8' 11" (Front)	N/A	141.0	376.5	Linked from: Upper Truss 2, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Header 9 1 piece(s) 5 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2979 @ 4"	12856 (5.50")	Passed (23%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	2375 @ 1' 2 1/2"	8745	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	7911 @ 5' 11 1/2"	14850	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.165 @ 5' 11 1/2"	0.281	Passed (L/819)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.300 @ 5' 11 1/2"	0.563	Passed (L/451)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	1.50"	1341	1639	2979	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.50"	1341	1639	2979	Blocking

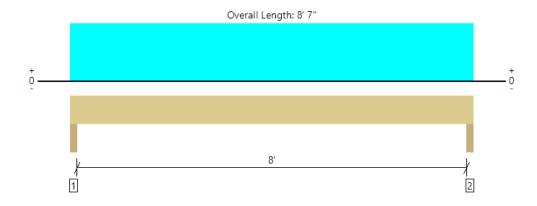
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 11" o/c	
Bottom Edge (Lu)	11' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 11"	N/A	12.0		
1 - Uniform (PLF)	0 to 11' 11" (Front)	N/A	144.0	-	Floor
2 - Uniform (PLF)	0 to 11' 11" (Front)	N/A	69.0	275.0	Linked from: Upper Truss 5, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Header 10 2 piece(s) 2 x 10 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1551 @ 2"	6563 (3.50")	Passed (24%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	1113 @ 1' 3/4"	3330	Passed (33%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2931 @ 4' 3 1/2"	3529	Passed (83%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.094 @ 4' 3 1/2"	0.275	Passed (L/999+)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.119 @ 4' 3 1/2"	0.412	Passed (L/832)		1.0 D + 0.75 L + 0.75 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	320	1159	483	1551	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	320	1159	483	1551	None

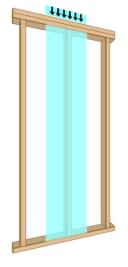
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	7.0			
1 - Uniform (PSF)	0 to 8' 7"	4' 6"	15.0	60.0	25.0	Deck

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Wall 1 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12' Member Height: 11' 7 1/2" O. C. Spacing: 16.00"

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	1101	5432	Passed (20%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	1101	4383	Passed (25%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	112			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	103	1584	Passed (7%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	326 @ mid-span	1342	Passed (24%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	1.16	Passed (L/836)		1.0 D + 0.6 W
Bending/Compression	0.27	1	Passed (27%)	1.60	1.0 D + 0.6 W

- Lateral deflection criteria: Wind (L/120)
- · Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- A bearing area factor of 1.25 has been applied to base plate bearing capacity.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material
Тор	Dbl 2X	Spruce-Pine-Fir
Base	2X	Spruce-Pine-Fir

Member Type : Stud Building Code : IBC 2018 Design Methodology : ASD

System: Wall

Max Unbraced Length	Comments
1'	

Lateral Connections								
Supports	Connector	Type/Model	Quantity	Connector Nailing				
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A				

Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

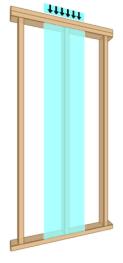
Vertical Loads	Spacing	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (PLF)	16.00"	144.0	-	-	-	Default Load
2 - Point (PLF)	16.00"	92.3	-	134.3	168.0	Linked from: Roof Truss 3, Support 2
3 - Point (PLF)	16.00"	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 2

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	24.1	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

[•] IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Upper Floor, Upper Wall 2 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12' Member Height: 11' 7 1/2" O. C. Spacing: 16.00"

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	2100	5432	Passed (39%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2100	4383	Passed (48%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	112			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	103	1584	Passed (7%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	326 @ mid-span	1342	Passed (24%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	1.16	Passed (L/836)		1.0 D + 0.6 W
Bending/Compression	0.42	1	Passed (42%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

- · Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- A bearing area factor of 1.25 has been applied to base plate bearing capacity.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material
Тор	Dbl 2X	Spruce-Pine-Fir
Base	2X	Spruce-Pine-Fir

Member Type : Stud Building Code : IBC 2018 Design Methodology: ASD

System: Wall

Max Unbraced Length	Comments
1'	

Lateral Connection	ons			
Supports	Connector	Type/Model	Quantity	Connector Nailing
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A

[•] Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

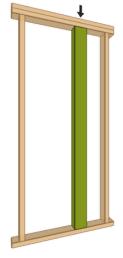
		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (PLF)	16.00"	144.0	-	-	-	Default Load
2 - Point (PLF)	16.00"	150.8	-	201.8	252.0	Linked from: Roof Truss 1, Support 1
3 - Point (PLF)	16.00"	162.8	-	216.8	270.8	Linked from: Roof Truss 2, Support 2
4 - Point (PLF)	16.00"	100.5	268.5	-	-	Linked from: Upper Truss 1, Support 1
5 - Point (PLF)	16.00"	141.0	376.5	-	-	Linked from: Upper Truss 2, Support 2

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	24.1	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Post 1 1 piece(s) 6 x 8 DF No.2

Wall Height: 11' Member Height: 10' 7 1/2" Tributary Width: 1'

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	17	50	Passed (34%)		
Compression (lbs)	17710	27647	Passed (64%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	17710	17531	Passed (101%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Supports	Туре	Material		
Тор	Dbl 2X	Douglas Fir-Larch		
Base	2X	Spruce-Pine-Fir		

System : Wall Member Type : Column Building Code : IBC 2018 Design Methodology : ASD

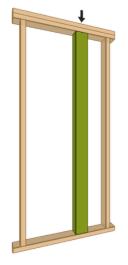
Max Unbraced Length	Comments
1'	

Vertical Load	Tributary Width	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (lb)	N/A	8602	5740	5127		Linked from: Upper Beam 5, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		


Upper Floor, Upper Post 2 1 piece(s) 4 x 8 DF No.2 Post will be let through & plate to bear directly on

WF beam below

FALLED

Tributary Width: 1'

Wall Height: 11' Member Height: 10' 7 1/2"

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	18	50	Passed (35%)		
Compression (lbs)	26650	27770	Passed (96%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	26650	15859	Failed (168%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

- · Lateral deflection criteria: Wind (L/120)
- . Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Supports	Туре	Material
Тор	Dbl 2X	Douglas Fir-Larch
Base	2X	Douglas Fir-Larch

Member Type : Column
Building Code: IBC 2018
Design Methodology : ASD

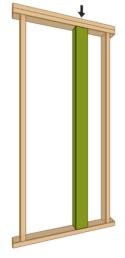
System : Wall

Max Unbraced Length	Comments
1'	

		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (lb)	N/A	9255	7128	4987		Linked from: Upper Beam 5, Support 2
2 - Point (lb)	N/A	2998	2923	2335		Linked from: Upper Beam 6, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library


ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Upper Floor, Upper Post 3 1 piece(s) 4 x 6 DF No.2

Wall Height: 11' Member Height: 10' 7 1/2" Tributary Width: 1'

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46%)		
Compression (lbs)	10694	14247	Passed (75%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	10694	12031	Passed (89%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- Bearing shall be on a metal plate or strap, or on other equivalently durable, rigid, homogeneous material with sufficient stiffness to distribute applied load.

Supports	Туре	Material
Тор	Dbl 2X	Douglas Fir-Larch
Base	2X	Douglas Fir-Larch

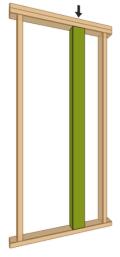
System . Wall
Member Type : Column
Building Code: IBC 2018
Design Methodology : AS

Max Unbraced Length	Comments
1'	

Vertical Loads	Tributary Width	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (lb)	N/A	1877	2923	926		Linked from: Upper Beam 6, Support 2
2 - Point (lb)	N/A	1668	4226	-		Linked from: Upper Beam 7, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.


ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Upper Floor, Upper Post 4 1 piece(s) 6 x 6 DF No.2

Wall Height: 11' Member Height: 10' 7 1/2" Tributary Width: 1'

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	23	50	Passed (46%)		
Compression (lbs)	10103	14825	Passed (68%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	10546	18906	Passed (56%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	0				N/A
Lateral Shear (lbs)	0	N/A	Passed (N/A)		N/A
Lateral Moment (ft-lbs)	0 @ mid-span	N/A	Passed (N/A)		N/A
Total Deflection (in)	0.00 @ mid-span	N/A	Passed (N/A)		N/A
Bending/Compression	N/A	1	Passed (N/A)		N/A

- Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- This product has a square cross section. The analysis engine has checked both edge and plank orientations to allow for either installation.

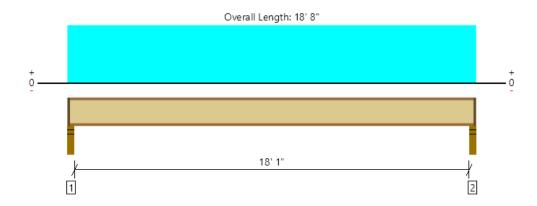
Supports	Туре	Material
Тор	Dbl 2X	Douglas Fir-Larch
Base	2X	Douglas Fir-Larch

System : Wall Member Type : Column Building Code : IBC 2018 Design Methodology : ASD

Max Unbraced Length	Comments
1'	

Vertical Load	Tributary Width	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (lb)	N/A	4295	5808	1197		Linked from: Upper Beam 8, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Truss 1 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	677 @ 2 1/2"	1183 (2.25")	Passed (57%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	663 @ 3 1/2"	1655	Passed (40%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	3053 @ 9' 4"	4215	Passed (72%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.356 @ 9' 4"	0.456	Passed (L/615)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.489 @ 9' 4"	0.913	Passed (L/447)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	40	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

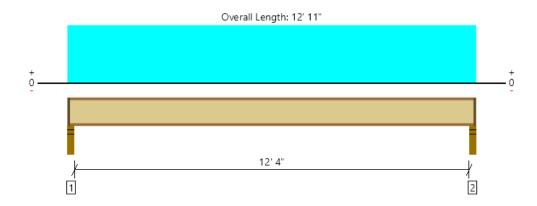
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	187	498	684	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	187	498	684	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 10" o/c	
Bottom Edge (Lu)	18' 6" o/c	

- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- $\bullet \mbox{Maximum allowable bracing intervals based on applied load.} \\$

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 18' 8"	16"	15.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Truss 2 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	466 @ 2 1/2"	1183 (2.25")	Passed (39%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	452 @ 3 1/2"	1655	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1432 @ 6' 5 1/2"	4215	Passed (34%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.088 @ 6' 5 1/2"	0.313	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.121 @ 6' 5 1/2"	0.625	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	57	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- · Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	129	344	474	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	2.25"	1.75"	129	344	474	1 1/4" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

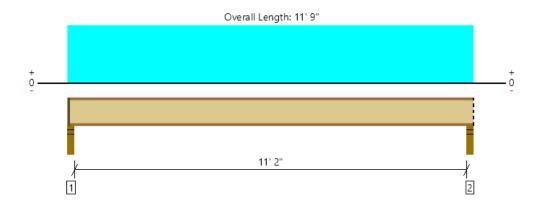
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 2" o/c	
Bottom Edge (Lu)	12' 9" o/c	

[•]TJI joists are only analyzed using Maximum Allowable bracing solutions.

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 11"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Truss 3-2 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	423 @ 2 1/2"	1183 (2.25")	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	409 @ 3 1/2"	1655	Passed (25%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1177 @ 5' 10 1/2"	4215	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.062 @ 5' 10 1/2"	0.283	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.086 @ 5' 10 1/2"	0.567	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	60	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code: IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

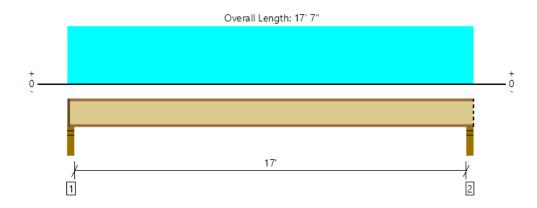
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	118	313	431	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.75"	117	313	431	Blocking

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' o/c	
Bottom Edge (Lu)	11' 8" o/c	

- •TJI joists are only analyzed using Maximum Allowable bracing solutions.
- •Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 11' 9"	16"	15.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Truss 4 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	637 @ 2 1/2"	1183 (2.25")	Passed (54%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	623 @ 3 1/2"	1655	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2701 @ 8' 9 1/2"	4215	Passed (64%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.283 @ 8' 9 1/2"	0.429	Passed (L/729)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.389 @ 8' 9 1/2"	0.858	Passed (L/530)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	44	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

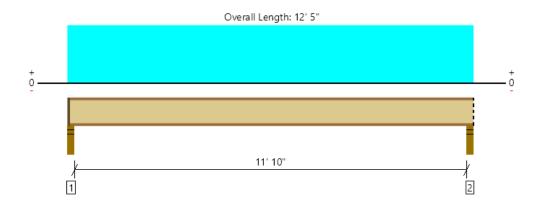
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	176	469	645	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.75"	176	469	645	Blocking

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 2" o/c	
Bottom Edge (Lu)	17' 6" o/c	

- $\bullet \mbox{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.
- $\bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 17' 7"	16"	15.0	40.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Truss 5 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	448 @ 2 1/2"	1183 (2.25")	Passed (38%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	434 @ 3 1/2"	1655	Passed (26%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1320 @ 6' 2 1/2"	4215	Passed (31%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.076 @ 6' 2 1/2"	0.300	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.105 @ 6' 2 1/2"	0.600	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
TJ-Pro™ Rating	59	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

	В	earing Lengt	th	Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	124	331	455	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.75"	124	331	455	Blocking

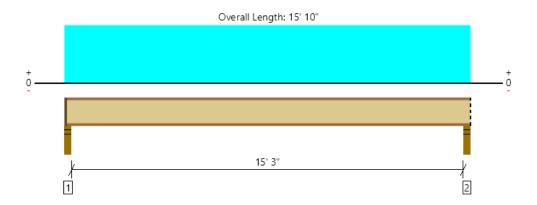
- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	7' 6" o/c	
Bottom Edge (Lu)	12' 4" o/c	

- $\bullet \mbox{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.
- $\bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

			Dead	Floor Live	
Vertical Load	Location	Spacing	(0.90)	(1.00)	Comments
1 - Uniform (PSF)	0 to 12' 5"	16"	15.0	40.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Truss 6 1 piece(s) 11 7/8" TJI ® 230 @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	781 @ 2 1/2"	1183 (2.25")	Passed (66%)	1.00	1.0 D + 1.0 L (All Spans)
Shear (lbs)	762 @ 3 1/2"	1655	Passed (46%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2971 @ 7' 11"	4215	Passed (70%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.302 @ 7' 11"	0.385	Passed (L/613)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.373 @ 7' 11"	0.771	Passed (L/496)		1.0 D + 0.75 L + 0.75 S (All Spans)
TJ-Pro™ Rating	49	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro[™] Rating include: None.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.75"	158	633	264	831	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.75"	158	633	264	831	Blocking

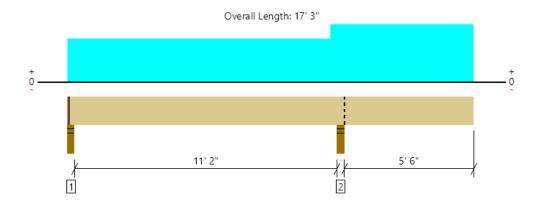
- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	4' 9" o/c	
Bottom Edge (Lu)	15' 9" o/c	

- $\bullet \mbox{TJI}$ joists are only analyzed using Maximum Allowable bracing solutions.
- $\bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

			Dead	Floor Live	Snow	
Vertical Load	Location	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 15' 10"	16"	15.0	60.0	25.0	Default Load

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Main, Main Deck 1 1 piece(s) 1 3/4" x 9 1/4" 2.0E Microllam® LVL @ 16" OC

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1274 @ 11' 7 1/4"	2603 (3.50")	Passed (49%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	618 @ 10' 8 1/4"	3076	Passed (20%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	-1594 @ 11' 7 1/4"	5826	Passed (27%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.272 @ 17' 3"	0.376	Passed (2L/498)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
Total Load Defl. (in)	0.290 @ 17' 3"	0.565	Passed (2L/466)		1.0 D + 0.75 L + 0.75 S (Alt Spans)
TJ-Pro™ Rating	58	35	Passed		

System : Floor Member Type : Joist Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/360) and TL (L/240).
- Overhang deflection criteria: LL (2L/360) and TL (2L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- A 4% increase in the moment capacity has been added to account for repetitive member usage.
- A structural analysis of the deck has not been performed.
- Deflection analysis is based on composite action with a single layer of 23/32" Weyerhaeuser Edge™ Panel (24" Span Rating) that is glued and nailed down.
- Additional considerations for the TJ-Pro™ Rating include: None.

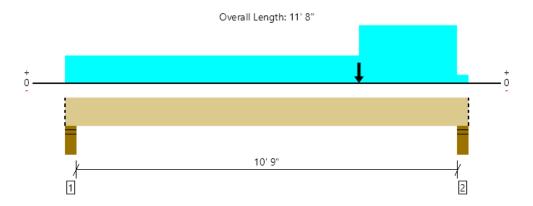
	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Stud wall - SPF	3.50"	2.25"	1.50"	90	473/-104	-46	563/-22	1 1/4" Rim Board
2 - Stud wall - SPF	3.50"	3.50"	1.71"	255	1019	249	1274	Blocking

- Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.
- Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	17' 2" o/c	
Bottom Edge (Lu)	17' 2" o/c	

 $[\]bullet {\sf Maximum\ allowable\ bracing\ intervals\ based\ on\ applied\ load}.$

			Dead	Floor Live	Snow	
Vertical Loads	Location (Side)	Spacing	(0.90)	(1.00)	(1.15)	Comments
1 - Uniform (PSF)	0 to 11' 2"	16"	15.0	60.0	-	Default Load
2 - Uniform (PSF)	11' 2" to 17' 3"	16"	15.0	60.0	25.0	Floor


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Beam 1 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	9159 @ 11' 4"	12856 (5.50")	Passed (71%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	7268 @ 10' 2 1/2"	11660	Passed (62%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	20707 @ 6' 9 15/16"	26400	Passed (78%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.152 @ 5' 11 13/16"	0.275	Passed (L/870)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.318 @ 6' 1/16"	0.550	Passed (L/415)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code: IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 11'.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length		Loads to Supports (lbs)						
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.87"	3424	3281	308	385	6705	Blocking
2 - Stud wall - SPF	5.50"	5.50"	3.92"	4823	4262	1217	1520	9159	Blocking

[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

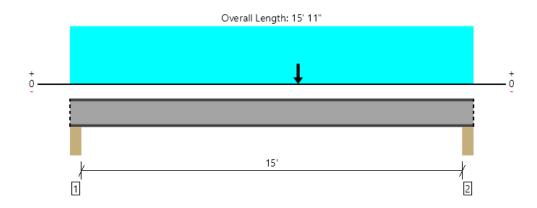
Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 8" o/c	
Bottom Edge (Lu)	11' 8" o/c	

 $[\]bullet \mbox{Maximum allowable bracing intervals based on applied load. }$

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 11' 8"	N/A	16.0				
1 - Uniform (PLF)	0 to 11' 8" (Front)	N/A	288.0	-	-	-	Floor
2 - Uniform (PLF)	8' 6" to 11' 4" (Front)	N/A	174.0	-	232.5	290.3	Linked from: Roof Truss 1, Support 2
3 - Point (lb)	8' 6" (Front)	N/A	674	-	866	1082	Linked from: Roof Header 2, Support 2
4 - Uniform (PLF)	8' 6" to 11' 4" (Front)	N/A	100.5	268.5	-	-	Linked from: Upper Truss 1, Support 2
5 - Point (lb)	8' 6" (Front)	N/A	1149	1197	-	-	Linked from: Upper Header 7, Support 2
6 - Uniform (PLF)	0 to 11' 4" (Front)	N/A	96.8	258.0	-	-	Linked from: Main Truss 2, Support 2
7 - Uniform (PLF)	0 to 11' 4" (Front)	N/A	88.5	234.8	-	-	Linked from: Main Truss 3-2, Support 1

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Beam 2 1 piece(s) W12X45 (A992) ASTM Steel

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	21999 @ 15' 7"	34313 (5.50")	Passed (64%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	21604 @ 15' 5 1/2"	81070	Passed (27%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Moment (Ft-lbs)	124275 @ 9'	128159	Passed (97%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Live Load Defl. (in)	0.243 @ 8' 1 15/16"	0.381	Passed (L/753)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.433 @ 8' 2 1/16"	0.762	Passed (L/423)		1.0 D + 0.75 L + 0.75 S (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Bearing reinforcement may be required for point load located at 9'.
- Applicable calculations are based on ANSI/AISC 360-16.
- \bullet A lateral-torsional buckling factor (Cb) of 1.0 has been assumed.

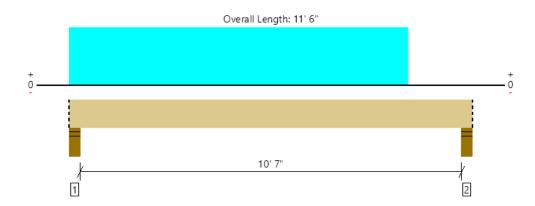
	Bearing Length		Loads to Supports (lbs)						
Supports	Total	Available	Required	Dead	Floor Live	Roof Live	Snow	Factored	Accessories
1 - Column - DF	5.50"	5.50"	5.50"	7814	10111	3161	3948	18358	Blocking
2 - Column - DF	5.50"	5.50"	5.50"	9488	11484	4161	5197	21999	Blocking

• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	End Bearing Points	
Bottom Edge (Lu)	End Bearing Points	

			Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 15' 11"	N/A	45.0				
1 - Uniform (PLF)	0 to 15' 11"	N/A	140.3	373.5	-	-	Linked from: Main Truss 1, Support 2
2 - Uniform (PLF)	0 to 15' 11"	N/A	132.0	351.8	-	-	Linked from: Main Truss 4, Support 1
3 - Point (lb)	9,	N/A	12253	10051	7322	9145	Linked from: Upper Post 2, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Beam 3 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5713 @ 4"	12856 (5.50")	Passed (44%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4364 @ 1' 4"	10203	Passed (43%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	14284 @ 5' 7 3/4"	20213	Passed (71%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.225 @ 5' 8 5/8"	0.271	Passed (L/579)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.314 @ 5' 8 5/8"	0.542	Passed (L/415)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 10' 10".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.44"	1618	4095	5713	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.75"	1175	2916	4091	Blocking

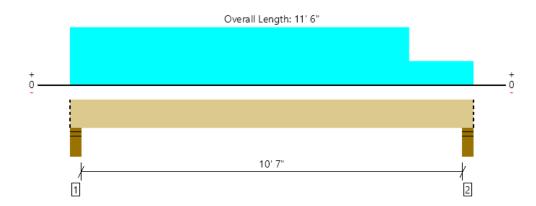
[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 6" o/c	
Bottom Edge (Lu)	11' 6" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 6"	N/A	14.0		
1 - Uniform (PLF)	0 to 9' 8" (Front)	N/A	140.3	373.5	Linked from: Main Truss 1, Support 2
2 - Uniform (PLF)	0 to 9' 8" (Front)	N/A	132.0	351.8	Linked from: Main Truss 4, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Beam 4 1 piece(s) 5 1/2" x 10 1/2" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	4774 @ 4"	12856 (5.50")	Passed (37%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	3656 @ 1' 4"	10203	Passed (36%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	12038 @ 5' 8 5/16"	20213	Passed (60%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.190 @ 5' 8 3/4"	0.271	Passed (L/686)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.265 @ 5' 8 13/16"	0.542	Passed (L/490)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- . Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 10' 10".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	2.04"	1361	3413	4774	Blocking
2 - Stud wall - SPF	5.50"	5.50"	1.71"	1146	2842	3988	Blocking

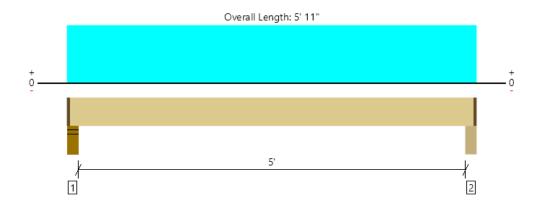
• Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	11' 6" o/c	
Bottom Edge (Lu)	11' 6" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 11' 6"	N/A	14.0		
1 - Uniform (PLF)	0 to 9' 8" (Front)	N/A	132.0	351.8	Linked from: Main Truss 4, Support 2
2 - Uniform (PLF)	0 to 11' 6" (Front)	N/A	93.0	248.3	Linked from: Main Truss 5, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Beam 6 2 piece(s) 1 3/4" x 14" 2.0E Microllam® LVL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1740 @ 4"	8750 (4.00")	Passed (20%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	819 @ 1' 7 1/2"	9310	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	2116 @ 2' 11 1/2"	24258	Passed (9%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.009 @ 2' 11 1/2"	0.131	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.012 @ 2' 11 1/2"	0.262	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Flush Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.

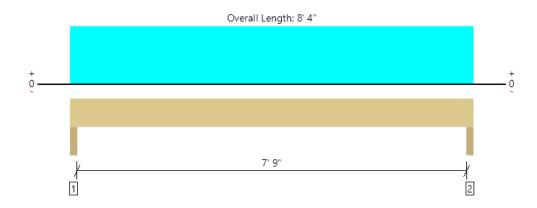
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - DF	5.50"	4.00"	1.50"	395	1420	1815	1 1/2" Rim Board
2 - Column - DF	5.50"	4.00"	1.50"	395	1420	1815	1 1/2" Rim Board

[•] Rim Board is assumed to carry all loads applied directly above it, bypassing the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	5' 8" o/c	
Bottom Edge (Lu)	5' 8" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	1 1/2" to 5' 9 1/2"	N/A	14.3		
1 - Uniform (PSF)	0 to 5' 11" (Front)	8'	15.0	60.0	Default Load


Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

Main, Main Header 1 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	2054 @ 2"	7963 (3.50")	Passed (26%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1540 @ 1' 1/2"	5565	Passed (28%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	3943 @ 4' 2"	9450	Passed (42%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.060 @ 4' 2"	0.200	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.119 @ 4' 2"	0.400	Passed (L/809)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8'.
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

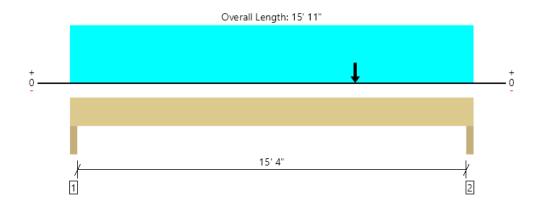
	Bearing Length			Loads	to Supports		
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1019	1034	2054	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1019	1034	2054	None.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 4" o/c	
Bottom Edge (Lu)	8' 4" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 8' 4"	N/A	7.7		
1 - Uniform (PLF)	0 to 8' 4"	N/A	144.0	-	Default Load
2 - Uniform (PLF)	0 to 8' 4"	N/A	93.0	248.3	Linked from: Main Truss 5, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Header 2 1 piece(s) 5 1/2" x 12" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3699 @ 15' 9"	12513 (3.50")	Passed (30%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	3379 @ 14' 7 1/2"	11660	Passed (29%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-Ibs)	14396 @ 11' 3"	26400	Passed (55%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.203 @ 8' 8 15/16"	0.390	Passed (L/923)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.402 @ 8' 5 9/16"	0.779	Passed (L/465)		1.0 D + 0.75 L + 0.75 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 15' 7".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

	Bearing Length			Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1474	739	307	2258	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1767	1819	757	3699	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	15' 11" o/c	
Bottom Edge (Lu)	15' 11" o/c	

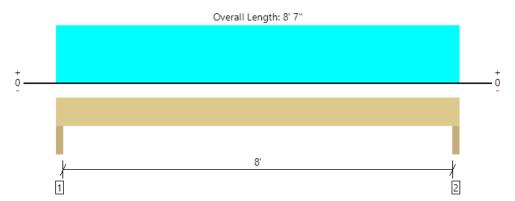
[•]Maximum allowable bracing intervals based on applied load.

Vertical Loads	Location	Tributary Width	Dead (0.90)	Floor Live (1.00)	Snow (1.15)	Comments
vertical Loads	Location	Tributary Wiatri	(0.70)	(1.00)	(1.10)	Comments
0 - Self Weight (PLF)	0 to 15' 11"	N/A	16.0			
1 - Uniform (PLF)	0 to 15' 11"	N/A	144.0	-	-	Floor
2 - Point (lb)	11' 3"	N/A	693	2558	1064	Linked from: Upper Header 4, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		



Main, Main Header 3 1 piece(s) 5 1/2" x 7 1/2" 24F-V4 DF Glulam

Less than 5% overstressed, OK by observation

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	5380 @ 2"	12513 (3.50")	Passed (43%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	4231 @ 11"	7288	Passed (58%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	10665 @ 4' 3 1/2"	10313	Failed (103%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.229 @ 4' 3 1/2"	0.206	Failed (L/433)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.375 @ 4' 3 1/2"	0.412	Passed (L/264)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- Applicable calculations are based on NDS.

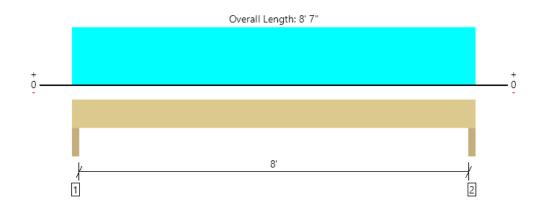
	Bearing Length		Loads to Supports (lbs)					
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	2100	3280	801	5380	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	2100	3280	801	5380	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	6" o/c	
Bottom Edge (Lu)	8' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	10.0			
1 - Uniform (PLF)	0 to 8' 7"	N/A	288.0	-	-	Floor
2 - Uniform (PLF)	0 to 8' 7"	N/A	191.3	764.3	186.8	Linked from: Main Truss 3, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Main, Main Header 4 1 piece(s) 3 1/2" x 9" 24F-V4 DF Glulam

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	3325 @ 2"	7963 (3.50")	Passed (42%)		1.0 D + 0.75 L + 0.75 S (All Spans)
Shear (lbs)	2421 @ 1' 1/2"	5565	Passed (44%)	1.00	1.0 D + 1.0 L (All Spans)
Pos Moment (Ft-lbs)	6338 @ 4' 3 1/2"	9450	Passed (67%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.137 @ 4' 3 1/2"	0.206	Passed (L/720)		1.0 D + 0.75 L + 0.75 S (All Spans)
Total Load Defl. (in)	0.211 @ 4' 3 1/2"	0.412	Passed (L/469)		1.0 D + 0.75 L + 0.75 S (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Critical positive moment adjusted by a volume/size factor of 1.00 that was calculated using length L = 8' 3".
- The effects of positive or negative camber have not been accounted for when calculating deflection.
- The specified glulam is assumed to have its strong laminations at the bottom of the beam. Install with proper side up as indicated by the manufacturer.
- · Applicable calculations are based on NDS.

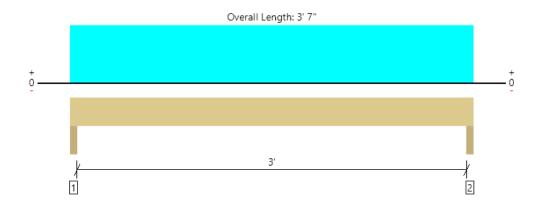
	1	Bearing Length		Loads to Supports (lbs)				
Supports	Total	Available	Required	Dead	Floor Live	Snow	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	1159	2037	850	3325	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	1159	2037	850	3325	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	8' 7" o/c	
Bottom Edge (Lu)	8' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	Snow	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	(1.15)	Comments
0 - Self Weight (PLF)	0 to 8' 7"	N/A	7.7			
1 - Uniform (PLF)	0 to 8' 7"	N/A	144.0	-	-	Floor
2 - Uniform (PLF)	0 to 8' 7"	N/A	118.5	474.8	198.0	Linked from: Main Truss 6, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Main, Main Header 5 2 piece(s) 2 x 6 DF No.2

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	1822 @ 2"	6563 (3.50")	Passed (28%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	1059 @ 9"	1980	Passed (53%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	1342 @ 1' 9 1/2"	1475	Passed (91%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.024 @ 1' 9 1/2"	0.081	Passed (L/999+)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.038 @ 1' 9 1/2"	0.162	Passed (L/999+)		1.0 D + 1.0 L (All Spans)

System: Wall
Member Type: Header
Building Use: Residential
Building Code: IBC 2018
Design Methodology: ASD

- Deflection criteria: LL (L/480) and TL (L/240).
- Allowed moment does not reflect the adjustment for the beam stability factor.
- Applicable calculations are based on NDS.

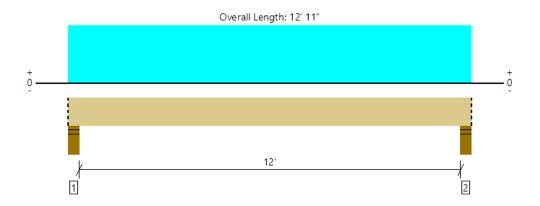
	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Trimmer - SPF	3.50"	3.50"	1.50"	690	1131	1822	None
2 - Trimmer - SPF	3.50"	3.50"	1.50"	690	1131	1822	None

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	3' 7" o/c	
Bottom Edge (Lu)	3' 7" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 3' 7"	N/A	4.2		
1 - Uniform (PLF)	0 to 3' 7"	N/A	144.0	-	Floor
2 - Uniform (PLF)	0 to 3' 7"	N/A	140.3	373.5	Linked from: Main Truss 1, Support 2
3 - Uniform (PLF)	0 to 3' 7"	N/A	96.8	258.0	Linked from: Main Truss 2, Support 1

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

Main, Main Header 6 1 piece(s) 5 1/4" x 14" 2.2E Parallam® PSL

All locations are measured from the outside face of left support (or left cantilever end). All dimensions are horizontal.

Design Results	Actual @ Location	Allowed	Result	LDF	Load: Combination (Pattern)
Member Reaction (lbs)	7874 @ 4"	12272 (5.50")	Passed (64%)		1.0 D + 1.0 L (All Spans)
Shear (lbs)	5893 @ 1' 7 1/2"	14210	Passed (41%)	1.00	1.0 D + 1.0 L (All Spans)
Moment (Ft-lbs)	22870 @ 6' 5 1/2"	40743	Passed (56%)	1.00	1.0 D + 1.0 L (All Spans)
Live Load Defl. (in)	0.201 @ 6' 5 1/2"	0.267	Passed (L/730)		1.0 D + 1.0 L (All Spans)
Total Load Defl. (in)	0.266 @ 6' 5 1/2"	0.267	Passed (L/552)		1.0 D + 1.0 L (All Spans)

System : Floor Member Type : Drop Beam Building Use : Residential Building Code : IBC 2018 Design Methodology : ASD

- Deflection criteria: LL (L/550) and TL (L/550).
- Allowed moment does not reflect the adjustment for the beam stability factor.

	Bearing Length			Loads to Supports (lbs)			
Supports	Total	Available	Required	Dead	Floor Live	Factored	Accessories
1 - Stud wall - SPF	5.50"	5.50"	3.53"	1921	5953	7874	Blocking
2 - Stud wall - SPF	5.50"	5.50"	3.53"	1921	5953	7874	Blocking

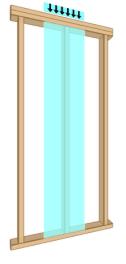
[•] Blocking Panels are assumed to carry no loads applied directly above them and the full load is applied to the member being designed.

Lateral Bracing	Bracing Intervals	Comments
Top Edge (Lu)	12' 11" o/c	
Bottom Edge (Lu)	12' 11" o/c	

[•]Maximum allowable bracing intervals based on applied load.

			Dead	Floor Live	
Vertical Loads	Location (Side)	Tributary Width	(0.90)	(1.00)	Comments
0 - Self Weight (PLF)	0 to 12' 11"	N/A	23.0		
1 - Uniform (PSF)	0 to 12' 11" (Back)	9' 6"	15.0	60.0	Deck
2 - Uniform (PLF)	0 to 12' 11" (Front)	N/A	132.0	351.8	Linked from: Main Truss 4, Support 2

Weyerhaeuser Notes


Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Main, Main Wall 1 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12' Member Height: 11' 7 1/2" O. C. Spacing: 16.00"

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	2730	5432	Passed (50%)	1.15	1.0 D + 0.75 L + 0.75 S
Plate Bearing (lbs)	2730	4383	Passed (62%)		1.0 D + 0.75 L + 0.75 S
Lateral Reaction (lbs)	112			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	103	1584	Passed (7%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	326 @ mid-span	1342	Passed (24%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	1.16	Passed (L/836)		1.0 D + 0.6 W
Bending/Compression	0.56	1	Passed (56%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

- Lateral deflection criteria: Wind (L/120)
- · Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- A bearing area factor of 1.25 has been applied to base plate bearing capacity.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material
Тор	Dbl 2X	Spruce-Pine-Fir
Base	2X	Spruce-Pine-Fir

2X Spruce-Pine-Fir Building Code : IBC 2018
Design Methodology : ASD

Comments

System : Wall Member Type : Stud

Max Unbraced Length	Comments
1'	

Lateral Connection	ons			
Supports	Connector	Type/Model	Quantity	Connector Nailing
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A

[•] Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

Vertical Loads	Spacing	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (PLF)	16.00"	288.0	-	-		
2 - Point (PLF)	16.00"	174.0	-	232.5	290.3	Linked from: Roof Truss 1, Support 2
3 - Point (PLF)	16.00"	154.5	411.8	-	-	Linked from: Upper Truss 3, Support 2
4 - Point (PLF)	16.00"	191.3	764.3	-	186.8	Linked from: Main Truss 3, Support 2

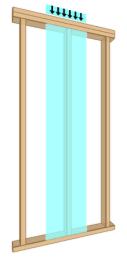
			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	24.1	

[•] ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	



[•] IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Main, Main Wall 2 1 piece(s) 2 x 6 DF No.2 @ 16" OC

Wall Height: 12' Member Height: 11' 7 1/2" O. C. Spacing: 16.00"

Drawing is Conceptual

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	25	50	Passed (51%)		
Compression (lbs)	3048	5304	Passed (57%)	1.00	1.0 D + 1.0 L
Plate Bearing (lbs)	3048	4383	Passed (70%)		1.0 D + 1.0 L
Lateral Reaction (lbs)	112			1.60	1.0 D + 0.6 W
Lateral Shear (lbs)	103	1584	Passed (7%)	1.60	1.0 D + 0.6 W
Lateral Moment (ft-lbs)	326 @ mid-span	1342	Passed (24%)	1.60	1.0 D + 0.6 W
Total Deflection (in)	0.17 @ mid-span	1.16	Passed (L/836)		1.0 D + 0.6 W
Bending/Compression	0.65	1	Passed (65%)	1.60	1.0 D + 0.45 W + 0.75 L + 0.75 S

- · Lateral deflection criteria: Wind (L/120)
- Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.
- A bearing area factor of 1.25 has been applied to base plate bearing capacity.
- A 15% increase in the moment capacity has been added to account for repetitive member usage.

Supports	Туре	Material
Тор	Dbl 2X	Spruce-Pine-Fir
Base	2X	Spruce-Pine-Fir

Member Type : Stud Building Code : IBC 2018 Design Methodology: ASD

System: Wall

Max Unbraced Length	Comments
1'	

Lateral Connection	ons			
Supports	Connector	Type/Model	Quantity	Connector Nailing
Тор	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A
Base	Nails	8d (0.113" x 2 1/2") (Toe)	2	N/A

[•] Nailed connection at the top of the member is assumed to be nailed through the bottom 2x plate prior to placement of the top 2x of the double top plate assembly.

		Dead	Floor Live	Roof Live	Snow	
Vertical Loads	Spacing	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (PLF)	16.00"	288.0	-	-	-	
2 - Point (PLF)	16.00"	150.8	-	201.8	252.0	Linked from: Roof Truss 1, Support 1
3 - Point (PLF)	16.00"	92.3	-	134.3	168.0	Linked from: Roof Truss 3, Support 2
4 - Point (PLF)	16.00"	100.5	268.5	-	-	Linked from: Upper Truss 1, Support 1
5 - Point (PLF)	16.00"	141.0	376.5	-	-	Linked from: Upper Truss 2, Support 2
6 - Point (PLF)	16.00"	140.3	373.5	-	-	Linked from: Main Truss 1, Support 2
7 - Point (PLF)	16.00"	96.8	258.0	-	-	Linked from: Main Truss 2, Support 1

			Wind	
Lateral Load	Location	Spacing	(1.60)	Comments
1 - Uniform (PSF)	Full Length	16.00"	24.1	

ASCE/SEI 7 Sec. 30.4: Exposure Category (B), Mean Roof Height (33'), Topographic Factor (1.0), Wind Directionality Factor (0.85), Basic Wind Speed (115), Risk Category(II), Effective Wind Area determined using full member span and trib. width.

• IBC Table 1604.3, footnote f: Deflection checks are performed using 42% of this lateral wind load.

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

ForteWEB Software Operator	Job Notes
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com	

Main, Main Post 1 1 piece(s) 6 x 6 DF No.2

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	20	50	Passed (39%)		
Compression (lbs)	15790	16909	Passed (93%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	15790	898425	Passed (2%)		1.0 D + 1.0 L
Bending/Compression	N/A	1	Passed (N/A)		N/A

- . Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.

Supports	Туре	Material
Base	Plate	Steel

Max Unbraced LengthCommentsFull Member LengthNo bracing assumed.

Member Type : Free Standing Post Building Code : IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Vertical Loads	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (lb)	3424	3281	308	385	Linked from: Main Beam 1, Support 1
2 - Point (lb)	4823	4262	1217	1520	Linked from: Main Beam 1, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

MEMBER REPORT

Main, Main Post 2 1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	21	50	Passed (41%)		
Compression (lbs)	17925	42272	Passed (42%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	18358	818606	Passed (2%)		1.0 D + 0.75 L + 0.75 S
Bending/Compression	N/A	1	Passed (N/A)		N/A

- · Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.

Supports	Туре	Material
Base	Plate	Steel

Max Unbraced Length Comments Full Member Length No bracing assumed. Member Type : Free Standing Post Building Code: IBC 2018 Design Methodology : ASD

Drawing is Conceptual

Vertical Load	Dead (0.90)	Floor Live (1.00)	Roof Live (non-snow: 1.25)	Snow (1.15)	Comments
1 - Point (lb)	7814	10111	3161	3018	Linked from: Main Beam 2, Support 1

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties wegernatuser warrants that the string on its products will be in accordance will well an accordance will well all the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library.

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

MEMBER REPORT

Main, Main Post 3 1 piece(s) 5 1/4" x 5 1/4" 1.8E Parallam® PSL

Post Height: 9'

Design Results	Actual	Allowed	Result	LDF	Load: Combination
Slenderness	21	50	Passed (41%)		
Compression (lbs)	37379	42272	Passed (88%)	1.00	1.0 D + 1.0 L
Base Bearing (lbs)	37379	818606	Passed (5%)		1.0 D + 1.0 L
Bending/Compression	N/A	1	Passed (N/A)		N/A

- · Input axial load eccentricity for the design is zero
- Applicable calculations are based on NDS.

Supports	Туре	Material
Base	Plate	Steel

Max Unbraced Length Comments Full Member Length No bracing assumed. Member Type : Free Standing Post Building Code: IBC 2018 Design Methodology : ASD

Drawing is Conceptual

	Dead	Floor Live	Roof Live	Snow	
Vertical Loads	(0.90)	(1.00)	(non-snow: 1.25)	(1.15)	Comments
1 - Point (lb)	1877	2923	926	1157	Linked from: Upper Beam 6, Support 2
2 - Point (lb)	1668	4226	-	-	Linked from: Upper Beam 7, Support 1
3 - Point (lb)	1618	4095	-	-	Linked from: Main Beam 3, Support 1
4 - Point (lb)	9488	11484	4161	5197	Linked from: Main Beam 2 Opt 2, Support 2

Weyerhaeuser Notes

Weyerhaeuser warrants that the sizing of its products will be in accordance with Weyerhaeuser product design criteria and published design values. Weyerhaeuser expressly disclaims any other warranties related to the software. Use of this software is not intended to circumvent the need for a design professional as determined by the authority having jurisdiction. The designer of record, builder or framer is responsible to assure that this calculation is compatible with the overall project. Accessories (Rim Board, Blocking Panels and Squash Blocks) are not designed by this software. Products manufactured at Weyerhaeuser facilities are third-party certified to sustainable forestry standards. Weyerhaeuser Engineered Lumber Products have been evaluated by ICC-ES under evaluation reports ESR-1153 and ESR-1387 and/or tested in accordance with applicable ASTM standards. For current code evaluation reports, Weyerhaeuser product literature and installation details refer to www.weyerhaeuser.com/woodproducts/document-library

The product application, input design loads, dimensions and support information have been provided by ForteWEB Software Operator

ForteWEB Software Operator	Job Notes	
Nabil Kausal-Hayes NKH Engineering (206) 601-9728 nabil@nkhengineering.com		

FOUNDATION DESIGN FOR PROPERTY LOCATED AT 3804 Mercer Way Mercer Island WA 98040

Basis of Design

This document is showing the detail of design and calculations of foundation for gravity loads according to IRC 2018, IBC 2018, ASCE7-16, and ACI 318-14.

The load distribution is as follow:
Flace Dand Land

Floor Dead Load	15 psf
Roof Dead Load	15 psf
Floor Live Load	40 psf
Roof Live Load	20 psf
Roof Snow Load	25 psf
Deck Live Load	60 psf
Deck Dead Load	15 psf

The maximum bearing pressure on soil was considered at least 1500 psf . Concrete strength is assumed to be at least 2500 psi

Material Properties for Design

 $f_c := 2500 psi$ Concrete compressive strength

 $f_{soil.bearing} \coloneqq 1500 psf \qquad \qquad \text{Minimum soil bearing capacity}$

 $\gamma_{concrete} \coloneqq 150 pcf$ Concrete unit weight

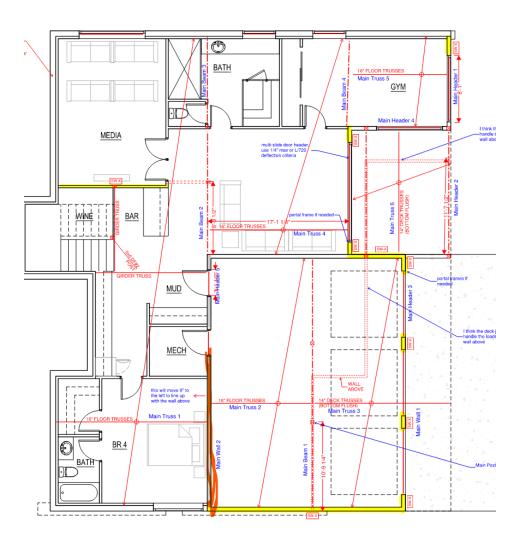
 $\gamma_{steel} \coloneqq 490 \mathrm{pcf} \hspace{1cm} \text{Steel unit weight}$

 $E_s := 29000 ksi$ Young modulus of steel

 $E_c := 57000 \cdot \sqrt{\frac{f_c}{psi}} \cdot psi = 2.85 \times 10^3 \cdot ksi$ Young modulus of concrete (ACI-318-14)

Load Assumptions

 $LL_{floor} \coloneqq 40 psf$ Floor live load


 $DL_{floor} := 15psf$ Floor dead load

 $DL_{roof} := 15psf$ Roof dead load

 $LL_{roof} := 20psf$ Roof live load

 $SL_{roof} := 25psf$ Roof snow load

Check Bearing Capacity of Foundation

$$F_{\text{wall}} := 3048 \frac{\text{lbf}}{16\text{in}}$$

Axial load on wall per stud-from ForteWeb

$$W_{found} := 20in$$

Foundation size

$$d_f := 10in$$

Thickness of foundation

$$\frac{F_{\text{wall}} + W_{\text{found}} \cdot d_{\text{f}} \cdot \gamma_{\text{concrete}}}{W_{\text{found}}} = 1.497 \times 10^{3} \cdot \text{psf}$$

OK less than 1500 psf

Check the one way shear:

$$V_f := 1.6 \cdot \frac{F_{\text{wall}}}{W_{\text{found}}} \cdot \left(\frac{W_{\text{found}}}{2}\right) = 1.829 \times 10^3 \cdot \text{plf}$$

$$\phi V_c := 0.75 \cdot 2 \cdot \sqrt{\frac{f_c}{psi}} \cdot (d_f - 3in) \cdot psi = 6.3 \times 10^3 \cdot plf$$

$$\frac{V_f}{\phi V_c} = 0.29$$
Less than 1.0 OK

$$\frac{0.0018 \cdot W_{found} \cdot d_f}{0.2 in^2} = 1.8$$

Use 2#4 rebar

3804 House Project Title: Engineer: NKH 22-112

Project File: Foundations.ec6

Project ID: Project Descr:

General Footing

LIC#: KW-06013860, Build:20.23.08.30 (c) ENERCALC INC 1983-2023 NKH Engineering

DESCRIPTION: Footing @ Main Post 1

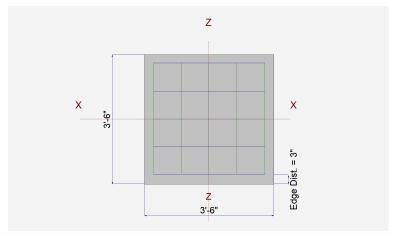
Code References

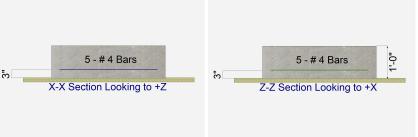
Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combinations Used: ASCE 7-16

General Information

Material Properties f'c: Concrete 28 day strength fy: Rebar Yield Ec: Concrete Elastic Modulus Concrete Density Q Values Flexure	= = = =	3,12 14	.50 ksi 0.0 ksi 2.0 ksi 5.0 pcf	Soil Design Values Allowable Soil Bearing Soil Density Increase Bearing By Footing Weight Soil Passive Resistance (for Sliding) Soil/Concrete Friction Coeff.	= = = =	1.50 ksf 110.0 pcf Yes 250.0 pcf 0.30
Shear Analysis Settings Min Steel % Bending Reinf. Min Allow % Temp Reinf. Min. Overturning Safety Factor	=	0.7 = = =	0.00180 1.0 : 1	Increases based on footing Depth Footing base depth below soil surface Allow press. increase per foot of depth when footing base is below	= = =	ft ksf ft
Min. Sliding Safety Factor Add Ftg Wt for Soil Pressure Use ftg wt for stability, moments & shears Add Pedestal Wt for Soil Pressure Use Pedestal wt for stability, mom & shear		= : : :	1.0:1 Yes Yes No	Increases based on footing plan dimensional Allowable pressure increase per foot of description when max. length or width is greater than		ksf ft


Dimensions


Width parallel to X-X Axis	=	3.50 ft
Length parallel to Z-Z Axis	=	3.50 ft
Footing Thickness	=	12.0 in

Pedestal dimensions... px: parallel to X-X Axis in pz : parallel to Z-Z Axis in Height in Rebar Centerline to Edge of Concrete... at Bottom of footing 3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars 5.0 Reinforcing Bar Size 4 Bars parallel to Z-Z Axis Number of Bars 5.0 Reinforcing Bar Size 4 Bandwidth Distribution Check (ACI 15.4.4.2) **Direction Requiring Closer Separation** n/a # Bars required within zone n/a # Bars required on each side of zone n/a

Applied Loads

		D	Lr	L	s	W	E	Н
P : Column Load	=	8.247	1.525	7.543	1.905			k
OB : Overburden	= _							ksf
M-xx M-zz	=							k-ft
M-zz	= _							k-ft
V-x	=							k
V-z	=							k

Project Title: Engineer: Project ID: Project Descr: 3804 House NKH 22-112

General Footing

LIC#: KW-06013860, Build:20.23.08.30 NKH Engineering (c) ENERCALC INC 1983-2023

DESCRIPTION: Footing @ Main Post 1

DES	SIGN S	SI IMIL	1ΔRY

Design OK

Project File: Foundations.ec6

	•				2 3 3 ig. 1 3 i i	
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination	
PASS	0.8717	Soil Bearing	1.434 ksf	1.645 ksf	+D+L about Z-Z axis	
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning	
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning	
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding	
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding	
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift	
PASS	0.2572	Z Flexure (+X)	2.865 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S	
PASS	0.2572	Z Flexure (-X)	2.865 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S	
PASS	0.2572	X Flexure (+Z)	2.865 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S	
PASS	0.2572	X Flexure (-Z)	2.865 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S	
PASS	0.2344	1-way Shear (+X)	17.582 psi	75.0 psi	+1.20D+1.60L+0.50S	
PASS	0.2344	1-way Shear (-X)	17.582 psi	75.0 psi	+1.20D+1.60L+0.50S	
PASS	0.2344	1-way Shear (+Z)	17.582 psi	75.0 psi	+1.20D+1.60L+0.50S	
PASS	0.2344	1-way Shear (-Z)	17.582 psi	75.0 psi	+1.20D+1.60L+0.50S	
PASS	0.4487	2-way Punching	67.310 psi	150.0 psi	+1.20D+1.60L+0.50S	

Detailed Results

Soil Bearing

Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow			
Load Combination	Gross Allowable	(in)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio			
X-X, D Only	1.645	n/a	0.0	0.8182	0.8182	n/a	n/a	0.497			
X-X, +D+L	1.645	n/a	0.0	1.434	1.434	n/a	n/a	0.872			
X-X, +D+Lr	1.645	n/a	0.0	0.9427	0.9427	n/a	n/a	0.573			
X-X, +D+S	1.645	n/a	0.0	0.9737	0.9737	n/a	n/a	0.592			
X-X, +D+0.750Lr+0.750L	1.645	n/a	0.0	1.373	1.373	n/a	n/a	0.835			
X-X, +D+0.750L+0.750S	1.645	n/a	0.0	1.397	1.397	n/a	n/a	0.849			
X-X, +0.60D	1.645	n/a	0.0	0.4909	0.4909	n/a	n/a	0.298			
Z-Z, D Only	1.645	0.0	n/a	n/a	n/a	0.8182	0.8182	0.497			
Z-Z, +D+L	1.645	0.0	n/a	n/a	n/a	1.434	1.434	0.872			
Z-Z, +D+Lr	1.645	0.0	n/a	n/a	n/a	0.9427	0.9427	0.573			
Z-Z, +D+S	1.645	0.0	n/a	n/a	n/a	0.9737	0.9737	0.592			
Z-Z, +D+0.750Lr+0.750L	1.645	0.0	n/a	n/a	n/a	1.373	1.373	0.835			
Z-Z, +D+0.750L+0.750S	1.645	0.0	n/a	n/a	n/a	1.397	1.397	0.849			
Z-Z, +0.60D	1.645	0.0	n/a	n/a	n/a	0.4909	0.4909	0.298			

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
Footing Has NO Overturning				

Sliding Stability

All units k

Force Application Axis				
Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
Footing Has NO Sliding				

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	1.443	+Z	Bottom	0.2592	AsMin	0.2857	11.139	ок
X-X, +1.40D	1.443	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+0.50Lr+1.60L	2.841	+Z	Bottom	0.2592	AsMin	0.2857	11.139	oĸ
X-X, +1.20D+0.50Lr+1.60L	2.841	-Z	Bottom	0.2592	AsMin	0.2857	11.139	oĸ
X-X, +1.20D+1.60L+0.50S	2.865	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60L+0.50S	2.865	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr+L	2.485	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr+L	2.485	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr	1.542	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr	1.542	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+L+1.60S	2.561	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK

Project Title: 3804 House Engineer: NKH Project ID: 22-112 Project Descr:

F F R I N G

General FootingProject File: Foundations.ec6LIC#: KW-06013860, Build:20.23.08.30NKH Engineering(c) ENERCALC INC 1983-2023

DESCRIPTION: Footing @ Main Post 1

Footing Flexure

Flexure Axis & Load Combinatio	n Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*M k-ft	n	Status
X-X, +1.20D+L+1.60S	2.561	-Z	Bottom	0.2592	AsMin	0.2857	11.1	139	ок
X-X, +1.20D+1.60S	1.618	+Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+1.60S	1.618	-Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+0.50Lr+L	2.275	+Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+0.50Lr+L	2.275	-Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+L+0.50S	2.299	+Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+L+0.50S	2.299	-Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +0.90D	0.9278	+Z	Bottom	0.2592	AsMin	0.2857	11.1		OK
X-X, +0.90D	0.9278	-Z	Bottom	0.2592	AsMin	0.2857	11.1		OK
X-X, +1.20D+L+0.20S	2.228	+Z	Bottom	0.2592	AsMin	0.2857	11.1		OK
X-X, +1.20D+L+0.20S	2.228	-Z	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.40D	1.443	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.40D	1.443	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+0.50Lr+1.60L	2.841	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+0.50Lr+1.60L	2.841	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60L+0.50S	2.865	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60L+0.50S	2.865	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60Lr+L	2.485	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60Lr+L	2.485	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60Lr	1.542	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60Lr	1.542	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+L+1.60S	2.561	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+L+1.60S	2.561	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60S	1.618	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60S	1.618	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+0.50Lr+L	2.275	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+0.50Lr+L	2.275	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+L+0.50S	2.299	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+L+0.50S	2.299	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +0.90D	0.9278 0.9278	-X	Bottom	0.2592 0.2592	AsMin AsMin	0.2857 0.2857	11.1 11.1		OK OK
Z-Z, +0.90D	2.228	+X ×	Bottom Bottom	0.2592	AsMin	0.2857	11.		OK
Z-Z, +1.20D+L+0.20S Z-Z, +1.20D+L+0.20S	2.228	-X +X	Bottom	0.2592	AsMin	0.2857	11.		OK
One Way Shear	2.220	TA	Dottom	0.2332	ASIVIIII	0.2031	11.	100	OK
Load Combination	Vu @ -X	Vu @	+X Vu	@ -Z Vu	@ +Z V	/u:Max Phi	Vn Vu	/ Phi*Vn	Status
+1.40D	8.86 ps	i	8.86 psi	8.86 psi	8.86 psi	8.86 psi	75.00 psi	0.12	ОК
+1.20D+0.50Lr+1.60L	17.44 ps		17.44 psi	17.44 psi	17.44 psi	17.44 psi	75.00 psi	0.23	OK
+1.20D+1.60L+0.50S	17.58 ps	i	17.58 psi	17.58 psi	17.58 psi	17.58 psi	75.00 psi	0.23	OK
+1.20D+1.60Lr+L	15.25 ps		15.25 psi	15.25 psi	15.25 psi	15.25 psi	75.00 psi	0.20	OK
+1.20D+1.60Lr	9.46 ps	i	9.46 psi	9.46 psi	9.46 psi	9.46 psi	75.00 psi	0.13	OK
+1.20D+L+1.60S	15.72 ps	i	15.72 psi	15.72 psi	15.72 psi	15.72 psi	75.00 psi	0.21	ОК
+1.20D+1.60S	9.93 ps		9.93 psi	9.93 psi	9.93 psi	9.93 psi	75.00 psi	0.13	ОК
+1.20D+0.50Lr+L	13.96 ps		13.96 psi	13.96 psi	13.96 psi	13.96 psi	75.00 psi	0.19	OK
+1.20D+L+0.50S	14.11 ps		14.11 psi	14.11 psi	14.11 psi	14.11 psi	75.00 psi	0.19	OK
+0.90D	5.69 ps		5.69 psi	5.69 psi	5.69 psi	5.69 psi	75.00 psi	0.08	OK
+1.20D+L+0.20S			13.67 psi	13.67 psi	13.67 psi	13.67 psi	75.00 psi	0.08	OK
Two-Way "Punching" Shear	13.67 ps	ol .	13.07 psi	13.07 psi	13.07 psi	13.07 psi	73.00 psi	All units	
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		33.9	1 psi	150.00p	si	0.2261			ОК
+1.20D+0.50Lr+1.60L		66.7		150.00p		0.445			OK
+1.20D+1.60L+0.50S			1 psi	150.00 p		0.4487			OK
+1.20D+1.60Lr+L			9 psi	150.00 p		0.3892			OK
+1.20D+1.60Lr			3 psi	150.00 p		0.2416			OK
			7 psi	150.00p	si	0.4011			OK
+1.20D+L+1.60S		60. i	<i>i</i> pai	100.00					
			2 psi	150.00p		0.2535			OK
+1.20D+L+1.60S		38.0	• .		si	0.2535 0.3564			OK
+1.20D+L+1.60S +1.20D+1.60S		38.0 53.4	2 psi	150.00p	osi osi				OK OK
+1.20D+L+1.60S +1.20D+1.60S +1.20D+0.50Lr+L		38.0 53.4 54.0	2 psi 6 psi	150.00p 150.00p	osi osi osi	0.3564			OK

Project Title: 3804 House Engineer: NKH
Project ID: 22-112
Project Descr:

General Footing Project File: Foundations.ec6

LIC# : KW-06013860, Build:20.23.08.30 NKH Engineering (c) ENERCALC INC 1983-2023

DESCRIPTION: Footing @ Main Post 2

Code References

Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

Load Combinations Used: ASCE 7-16

General Information

Material Properties				Soil Design Values		
f'c : Concrete 28 day strength	=	2	.50 ksi	Allowable Soil Bearing	=	1.50 ksf
fy : Rebar Yield	=	6	0.0 ksi	Soil Density	=	110.0 pcf
Ec : Concrete Elastic Modulus	=	,	2.0 ksi	Increase Bearing By Footing Weight	=	Yes
Concrete Density	=	14	5.0 pcf	Soil Passive Resistance (for Sliding)	=	250.0 pcf
_Φ Values Flexure	=	0	.90	Soil/Concrete Friction Coeff.	=	0.30
Shear	=	0.7	750	Increases based on footing Depth		
Analysis Settings				Footing base depth below soil surface	=	ft
Min Steel % Bending Reinf.		=		Allow press. increase per foot of depth	=	ksf
Min Allow % Temp Reinf.		=	0.00180	when footing base is below	=	ft
Min. Overturning Safety Factor		=	1.0 : 1	-		
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimension	on	
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of de	epth	
Use ftg wt for stability, moments & she	ars	:	Yes		=	ksf
Add Pedestal Wt for Soil Pressure		•	No	when max. length or width is greater than		
Use Pedestal wt for stability, mom & s	near	•	No		=	ft
Coc i cacotai wi for stability, morn a s	ioui	•	140			

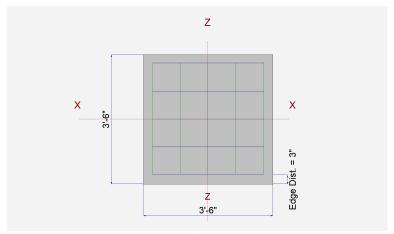
Dimensions

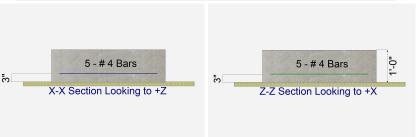
Width parallel to X-X Axis	=	3.50 ft
Length parallel to Z-Z Axis	=	3.50 ft
Footing Thickness	=	12.0 in

Pedestal dimensions...

px : parallel to X-X Axis = in

pz : parallel to Z-Z Axis = in


Height = in


Rebar Centerline to Edge of Concrete...

at Bottom of footing = 3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size 4 Bars parallel to Z-Z Axis Number of Bars 5 Reinforcing Bar Size 4 Bandwidth Distribution Check (ACI 15.4.4.2) **Direction Requiring Closer Separation** n/a # Bars required within zone n/a # Bars required on each side of zone n/a

Applied Loads

		D	Lr	L	s	W	E	Н
P : Column Load OB : Overburden	= =	7.814	3.161	10.111	3.948			k ksf
M-xx M-zz	= =							k-ft k-ft
V-x V-z	= =							k k

LIC#: KW-06013860, Build:20.23.08.30

Project Title: 3804 House Engineer: NKH Project ID: 22-112

75.0 psi

75.0 psi

150.0 psi

+1.20D+1.60L+0.50S

+1.20D+1.60L+0.50S

+1.20D+1.60L+0.50S

Project Descr:

General Footing

NKH Engineering

Project File: Foundations.ec6
(c) ENERCALC INC 1983-2023

DESCRIPTION: Footing @ Main Post 2

SIGN SU	UMMARY				Design OK
	Min. Ratio	Item	Applied	Capacity	Governing Load Combination
PASS	0.9994	Soil Bearing	1.644 ksf	1.645 ksf	+D+0.750L+0.750S about Z-Z axis
PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
PASS	0.3089	Z Flexure (+X)	3.441 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.3089	Z Flexure (-X)	3.441 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.3089	X Flexure (+Z)	3.441 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.3089	X Flexure (-Z)	3.441 k-ft/ft	11.139 k-ft/ft	+1.20D+1.60L+0.50S
PASS	0.2816	1-way Shear (+X)	21.120 psi	75.0 psi	+1.20D+1.60L+0.50S
PASS	0.2816	1-way Shear (-X)	21.120 psi	75.0 psi	+1.20D+1.60L+0.50S

21.120 psi

21.120 psi

80.852 psi

PASS 0.5 Detailed Results

PASS

PASS

0.2816

0.2816

0.5390

1-way Shear (+Z)

1-way Shear (-Z)

2-way Punching

Soil Bearing								
Rotation Axis &		Xecc	Zecc	Actual	Soil Bearing S	Stress @ Loc	ation	Actual / Allow
Load Combination	Gross Allowable	(ir	1)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.645	n/a	0.0	0.7829	0.7829	n/a	n/a	0.476
X-X, +D+L	1.645	n/a	0.0	1.608	1.608	n/a	n/a	0.978
X-X, +D+Lr	1.645	n/a	0.0	1.041	1.041	n/a	n/a	0.633
X-X, +D+S	1.645	n/a	0.0	1.105	1.105	n/a	n/a	0.672
X-X, +D+0.750Lr+0.750L	1.645	n/a	0.0	1.595	1.595	n/a	n/a	0.970
X-X, +D+0.750L+0.750S	1.645	n/a	0.0	1.644	1.644	n/a	n/a	0.999
X-X, +0.60D	1.645	n/a	0.0	0.4697	0.4697	n/a	n/a	0.286
Z-Z, D Only	1.645	0.0	n/a	n/a	n/a	0.7829	0.7829	0.476
Z-Z, +D+L	1.645	0.0	n/a	n/a	n/a	1.608	1.608	0.978
Z-Z, +D+Lr	1.645	0.0	n/a	n/a	n/a	1.041	1.041	0.633
Z-Z, +D+S	1.645	0.0	n/a	n/a	n/a	1.105	1.105	0.672
Z-Z, +D+0.750Lr+0.750L	1.645	0.0	n/a	n/a	n/a	1.595	1.595	0.970
Z-Z, +D+0.750L+0.750S	1.645	0.0	n/a	n/a	n/a	1.644	1.644	0.999
Z-Z, +0.60D	1.645	0.0	n/a	n/a	n/a	0.4697	0.4697	0.286

Overturning Stability

Rotation Axis & Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
Footing Has NO Overturning				

Sliding Stability

All units k

Force Application Axis				
Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
Footing Has NO Sliding				

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	1.367	+Z	Bottom	0.2592	AsMin	0.2857	11.139	ок
X-X, +1.40D	1.367	-Z	Bottom	0.2592	AsMin	0.2857	11.139	oĸ
X-X, +1.20D+0.50Lr+1.60L	3.392	+Z	Bottom	0.2592	AsMin	0.2857	11.139	oĸ
X-X, +1.20D+0.50Lr+1.60L	3.392	-Z	Bottom	0.2592	AsMin	0.2857	11.139	oĸ
X-X, +1.20D+1.60L+0.50S	3.441	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60L+0.50S	3.441	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr+L	3.068	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr+L	3.068	-Z	Bottom	0.2592	AsMin	0.2857	11.139	ok
X-X, +1.20D+1.60Lr	1.804	+Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+1.60Lr	1.804	-Z	Bottom	0.2592	AsMin	0.2857	11.139	OK
X-X, +1.20D+L+1.60S	3.226	+Z	Bottom	0.2592	AsMin	0.2857	11.139	oĸ

Project Title: 3804 House Engineer: Project ID: NKH 22-112

Project Descr:

General Footing

LIC#: KW-06013860, Build:20.23.08.30

DESCRIPTION: Footing @ Main Post 2

NKH Engineering

(c) ENERCALC INC 1983-2023

Project File: Foundations.ec6

+1.40D

+0.90D

+1.20D+0.50Lr+1.60L

+1.20D+1.60L+0.50S

+1.20D+1.60Lr+L

+1.20D+L+1.60S

+1.20D+0.50Lr+L

+1.20D+L+0.50S

+1.20D+L+0.20S

+1.20D+1.60Lr

+1.20D+1.60S

Footing Flexure

Flexure Axis & Load Combinatio	n <mark>Mu</mark> k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*M k-ft	n	Status
X-X, +1.20D+L+1.60S	3.226	-Z	Bottom	0.2592	AsMin	0.2857	11.1	139	ОК
X-X, +1.20D+1.60S	1.962	+Z	Bottom	0.2592	AsMin	0.2857	11.1		OK
X-X, +1.20D+1.60S	1.962	-Z	Bottom	0.2592	AsMin	0.2857	11.1		OK
X-X, +1.20D+0.50Lr+L	2.634	+Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+0.50Lr+L	2.634	-Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+L+0.50S	2.683	+Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+L+0.50S	2.683	-Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +0.90D	0.8791	+Z	Bottom	0.2592	AsMin	0.2857	11.1		OK
X-X, +0.90D	0.8791	-Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+L+0.20S	2.535	+Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
X-X, +1.20D+L+0.20S	2.535	-Z	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
Z-Z, +1.40D	1.367	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.40D	1.367	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+0.50Lr+1.60L	3.392	-X	Bottom	0.2592	AsMin	0.2857	11.1	139	ΟK
Z-Z, +1.20D+0.50Lr+1.60L	3.392	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60L+0.50S	3.441	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60L+0.50S	3.441	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60Lr+L	3.068	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60Lr+L	3.068	+X	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
Z-Z, +1.20D+1.60Lr	1.804	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60Lr	1.804	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+L+1.60S	3.226	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+L+1.60S	3.226	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +1.20D+1.60S	1.962	-X	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
Z-Z, +1.20D+1.60S	1.962	+X	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
Z-Z, +1.20D+0.50Lr+L	2.634	-X	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
Z-Z, +1.20D+0.50Lr+L	2.634	+X	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
Z-Z, +1.20D+L+0.50S	2.683	-X	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
Z-Z, +1.20D+L+0.50S	2.683	+X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +0.90D	0.8791	-X	Bottom	0.2592	AsMin	0.2857	11.1		OK
Z-Z, +0.90D	0.8791	+X	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
Z-Z, +1.20D+L+0.20S	2.535	-X	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
Z-Z, +1.20D+L+0.20S	2.535	+X	Bottom	0.2592	AsMin	0.2857	11.1	139	OK
One Way Shear									
Load Combination	Vu @ -X	Vu @		@ -Z Vu	_		ni Vn Vu /	Phi*Vn	Status
+1.40D	8.39 p	si	8.39 psi	8.39 psi	8.39 psi	8.39 psi	75.00 psi	0.11	OK
+1.20D+0.50Lr+1.60L	20.82 p		20.82 psi	20.82 psi	20.82 psi	20.82 psi	75.00 psi	0.28	OK
+1.20D+1.60L+0.50S	21.12 p		21.12 psi	21.12 psi	21.12 psi	21.12 psi	75.00 psi	0.28	OK
+1.20D+1.60Lr+L	18.83 p		18.83 psi	18.83 psi	18.83 psi	18.83 psi	75.00 psi	0.25	ок
+1.20D+1.60Lr	11.07 p		11.07 psi	11.07 psi	11.07 psi	11.07 psi	75.00 psi	0.15	OK
+1.20D+L+1.60S	19.80 p		19.80 psi	19.80 psi	19.80 psi	19.80 psi	75.00 psi	0.26	OK
+1.20D+1.60S	•			12.04 psi		12.04 psi	75.00 psi	0.20	OK
	12.04 p		12.04 psi		12.04 psi	•		0.10	OK
+1.20D+0.50Lr+L	16.16 p		16.16 psi	16.16 psi	16.16 psi	16.16 psi	75.00 psi		
+1.20D+L+0.50S	16.47 p		16.47 psi	16.47 psi	16.47 psi	16.47 psi	75.00 psi	0.22	OK
+0.90D	5.40 p		5.40 psi	5.40 psi	5.40 psi	5.40 psi	75.00 psi	0.07	OK
+1.20D+L+0.20S	15.56 p	si	15.56 psi	15.56 psi	15.56 psi	15.56 psi	75.00 psi	0.21	OK
Two-Way "Punching" Shear								All units	s k
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status

150.00psi

150.00 psi

32.13 psi

79.70 psi

80.85 psi

72.09 psi 42.39 psi

75.79 psi

46.09 psi

61.88 psi

63.03 psi

20.66 psi

59.56 psi

0.2142

0.5313 0.539

0.4806 0.2826

0.5053

0.3073

0.4125

0.4202

0.1377

0.397

ОК

ΟK

OK

OK

OK

OK

OK

OK

OK

OK

OK

Project Title: 3804 House Engineer: NKH Project ID: 22-112 Project Descr:

General Footing

LIC#: KW-06013860, Build:20.23.08.30

NKH Engineering

Project File: Foundations.ec6
(c) ENERCALC INC 1983-2023

DESCRIPTION: Footing @ Main Post 3

Code References

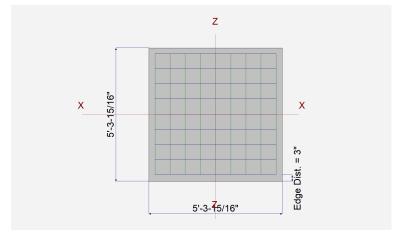
Calculations per ACI 318-14, IBC 2018, CBC 2019, ASCE 7-16

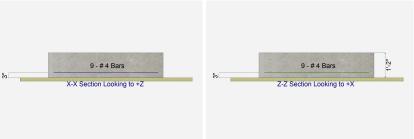
Load Combinations Used: ASCE 7-16

General Information

Material Properties				Soil Design Values		
f'c : Concrete 28 day strength	=	2	.50 ksi	Allowable Soil Bearing	=	1.50 ksf
fy : Rebar Yield	=	-	0.0 ksi	Soil Density	=	110.0 pcf
Ec : Concrete Elastic Modulus	=	,	2.0 ksi	Increase Bearing By Footing Weight	=	No .
Concrete Density	=	14	5.0 pcf	Soil Passive Resistance (for Sliding)	=	250.0 pcf
₍₎ Values Flexure	=	0	.90	Soil/Concrete Friction Coeff.	=	0.30
' Shear	=	0.7	750	Increases based on footing Depth		
Analysis Settings				Footing base depth below soil surface	=	ft
Min Steel % Bending Reinf.		=		Allow press, increase per foot of depth	=	ksf
Min Allow % Temp Reinf.		=	0.00180	when footing base is below	=	ft
Min. Overturning Safety Factor		=	1.0 : 1	· ·		
Min. Sliding Safety Factor		=	1.0 : 1	Increases based on footing plan dimension	on	
Add Ftg Wt for Soil Pressure		:	Yes	Allowable pressure increase per foot of de	epth	
Use ftg wt for stability, moments & shea	ars	:	Yes		=	ksf
Add Pedestal Wt for Soil Pressure		•	No	when max. length or width is greater than		•
Use Pedestal wt for stability, mom & sh	oor		No		=	ft
Ose Fedesiai wi for Stability, morn & Sh	tai	•	INO			

Dimensions


Width parallel to X-X Axis	=	5.330 ft
Length parallel to Z-Z Axis	=	5.330 ft
Footing Thickness	=	14.0 in


Pedestal dimensions...

px : parallel to X-X Axis = in
pz : parallel to Z-Z Axis = in
Height = in
Rebar Centerline to Edge of Concrete...
at Bottom of footing = 3.0 in

Reinforcing

Bars parallel to X-X Axis Number of Bars Reinforcing Bar Size 4 Bars parallel to Z-Z Axis Number of Bars 9 Reinforcing Bar Size 4 Bandwidth Distribution Check (ACI 15.4.4.2) **Direction Requiring Closer Separation** n/a # Bars required within zone n/a # Bars required on each side of zone n/a

Applied Loads

		D	Lr	L	S	W	E	Н
P : Column Load OB : Overburden	= =	14.650	5.10	22.730	6.40			k ksf
M-xx M-zz	= =							k-ft k-ft
V-x V-z	= =							k k

Project Title: Engineer: Project ID: Project Descr: 3804 House NKH 22-112

General Footing

LIC#: KW-06013860, Build:20.23.08.30

NKH Engineering

Project File: Foundations.ec6

(c) ENERCALC INC 1983-2023

D

DESCRIPTION: Footing @ Main Post 3

DE	SIGN SU	JMMARY				Design OK
		Min. Ratio	Item	Applied	Capacity	Governing Load Combination
	PASS	0.990	Soil Bearing	1.485 ksf	1.50 ksf	+D+L about Z-Z axis
	PASS	n/a	Overturning - X-X	0.0 k-ft	0.0 k-ft	No Overturning
	PASS	n/a	Overturning - Z-Z	0.0 k-ft	0.0 k-ft	No Overturning
	PASS	n/a	Sliding - X-X	0.0 k	0.0 k	No Sliding
	PASS	n/a	Sliding - Z-Z	0.0 k	0.0 k	No Sliding
	PASS	n/a	Uplift	0.0 k	0.0 k	No Uplift
	PASS	0.4433	Z Flexure (+X)	7.144 k-ft/ft	16.113 k-ft/ft	+1.20D+1.60L+0.50S
	PASS	0.4433	Z Flexure (-X)	7.144 k-ft/ft	16.113 k-ft/ft	+1.20D+1.60L+0.50S
	PASS	0.4433	X Flexure (+Z)	7.144 k-ft/ft	16.113 k-ft/ft	+1.20D+1.60L+0.50S
	PASS	0.4433	X Flexure (-Z)	7.144 k-ft/ft	16.113 k-ft/ft	+1.20D+1.60L+0.50S
	PASS	0.3574	1-way Shear (+X)	26.805 psi	75.0 psi	+1.20D+1.60L+0.50S
	PASS	0.3574	1-way Shear (-X)	26.805 psi	75.0 psi	+1.20D+1.60L+0.50S
	PASS	0.3574	1-way Shear (+Z)	26.805 psi	75.0 psi	+1.20D+1.60L+0.50S
	PASS	0.3574	1-way Shear (-Z)	26.805 psi	75.0 psi	+1.20D+1.60L+0.50S
	PASS	0.7617	2-way Punching	114.249 psi	150.0 psi	+1.20D+1.60L+0.50S
)et	tailed Re	esults				

Soil Bearing								
Rotation Axis &		Xecc Zecc Actual Soil Bearing S				Stress @ Loc	Actual / Allow	
Load Combination	Gross Allowable	(i	n)	Bottom, -Z	Top, +Z	Left, -X	Right, +X	Ratio
X-X, D Only	1.50	n/a	0.0	0.6849	0.6849	n/a	n/a	0.457
X-X, +D+L	1.50	n/a	0.0	1.485	1.485	n/a	n/a	0.990
X-X, +D+Lr	1.50	n/a	0.0	0.8644	0.8644	n/a	n/a	0.576
X-X, +D+S	1.50	n/a	0.0	0.9101	0.9101	n/a	n/a	0.607
X-X, +D+0.750Lr+0.750L	1.50	n/a	0.0	1.420	1.420	n/a	n/a	0.947
X-X, +D+0.750L+0.750S	1.50	n/a	0.0	1.454	1.454	n/a	n/a	0.969
X-X, +0.60D	1.50	n/a	0.0	0.4109	0.4109	n/a	n/a	0.274
Z-Z, D Only	1.50	0.0	n/a	n/a	n/a	0.6849	0.6849	0.457
Z-Z, +D+L	1.50	0.0	n/a	n/a	n/a	1.485	1.485	0.990
Z-Z, +D+Lr	1.50	0.0	n/a	n/a	n/a	0.8644	0.8644	0.576
Z-Z, +D+S	1.50	0.0	n/a	n/a	n/a	0.9101	0.9101	0.607
Z-Z, +D+0.750Lr+0.750L	1.50	0.0	n/a	n/a	n/a	1.420	1.420	0.947
Z-Z, +D+0.750L+0.750S	1.50	0.0	n/a	n/a	n/a	1.454	1.454	0.969
Z-Z, +0.60D	1.50	0.0	n/a	n/a	n/a	0.4109	0.4109	0.274

Overturning Stability

Load Combination	Overturning Moment	Resisting Moment	Stability Ratio	Status
Footing Has NO Overturning				

Sliding Stability

All units k

Force Application Axis				
Load Combination	Sliding Force	Resisting Force	Stability Ratio	Status
Footing Has NO Sliding				

Footing Flexure

Flexure Axis & Load Combination	Mu k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*Mn k-ft	Status
X-X, +1.40D	2.564	+Z	Bottom	0.3024	AsMin	0.3377	16.113	ок
X-X, +1.40D	2.564	-Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+0.50Lr+1.60L	7.062	+Z	Bottom	0.3024	AsMin	0.3377	16.113	ok
X-X, +1.20D+0.50Lr+1.60L	7.062	-Z	Bottom	0.3024	AsMin	0.3377	16.113	ok
X-X, +1.20D+1.60L+0.50S	7.144	+Z	Bottom	0.3024	AsMin	0.3377	16.113	ok
X-X, +1.20D+1.60L+0.50S	7.144	-Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60Lr+L	6.059	+Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60Lr+L	6.059	-Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60Lr	3.218	+Z	Bottom	0.3024	AsMin	0.3377	16.113	OK
X-X, +1.20D+1.60Lr	3.218	-Z	Bottom	0.3024	AsMin	0.3377	16.113	ok
X-X, +1.20D+L+1.60S	6.319	+Z	Bottom	0.3024	AsMin	0.3377	16.113	OK

Project Title: 3804 House Engineer: NKH Project ID: 22-112 Project Descr:

General Footing

LIC#: KW-06013860, Build:20.23.08.30

NKH Engineering

(c) ENERCALC INC 1983-2023

Project File: Foundations.ec6

DESCRIPTION: Footing @ Main Post 3

Footing Flexure

Flexure Axis & Load Combination	n <mark>Mu</mark> k-ft	Side	Tension Surface	As Req'd in^2	Gvrn. As in^2	Actual As in^2	Phi*M k-ft	n	Status
X-X, +1.20D+L+1.60S	6.319	-Z	Bottom	0.3024	AsMin	0.3377	16.1	I13	ок
X-X, +1.20D+1.60S	3.478	+Z		0.3024	AsMin	0.3377	16.1	113	OK
X-X, +1.20D+1.60S	3.478	-Z	Bottom	0.3024	AsMin	0.3377	16.1	113	OK
X-X, +1.20D+0.50Lr+L	5.358	+Z	Bottom	0.3024	AsMin	0.3377	16.1	113	OK
X-X, +1.20D+0.50Lr+L	5.358	-Z	Bottom	0.3024	AsMin	0.3377	16.1	113	OK
X-X, +1.20D+L+0.50S	5.439	+Z	Bottom	0.3024	AsMin	0.3377	16.1	113	OK
X-X, +1.20D+L+0.50S	5.439	-Z		0.3024	AsMin	0.3377	16.1	113	OK
X-X, +0.90D	1.648	+Z		0.3024	AsMin	0.3377	16.1		OK
X-X, +0.90D	1.648	-Z		0.3024	AsMin	0.3377	16.1		OK
X-X, +1.20D+L+0.20S	5.199	+Z		0.3024	AsMin	0.3377	16.1		OK
X-X, +1.20D+L+0.20S	5.199	-Z		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.40D	2.564	-X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.40D	2.564	+X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+0.50Lr+1.60L	7.062	-X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+0.50Lr+1.60L	7.062	+X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+1.60L+0.50S	7.144	-X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+1.60L+0.50S	7.144	+X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+1.60Lr+L	6.059	-X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+1.60Lr+L	6.059	+X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+1.60Lr	3.218	-X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+1.60Lr	3.218	+X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+L+1.60S	6.319 6.319	-X +X		0.3024 0.3024	AsMin AsMin	0.3377 0.3377	16.1 16.1		OK OK
Z-Z, +1.20D+L+1.60S Z-Z, +1.20D+1.60S	3.478	+^ -X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+1.60S Z-Z, +1.20D+1.60S	3.478	-^ +X		0.3024	AsMin	0.3377	16.1		OK OK
Z-Z, +1.20D+1.003 Z-Z, +1.20D+0.50Lr+L	5.358	-X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+0.50Lr+L Z-Z, +1.20D+0.50Lr+L	5.358	-^ +X		0.3024	AsMin	0.3377	16.1		OK OK
Z-Z, +1.20D+0.50E1+E Z-Z, +1.20D+L+0.50S	5.439	-X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+L+0.50S	5.439	+X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +0.90D	1.648	-X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +0.90D	1.648	+X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+L+0.20S	5.199	-X		0.3024	AsMin	0.3377	16.1		OK
Z-Z, +1.20D+L+0.20S	5.199	+X		0.3024	AsMin	0.3377	16.1		OK
One Way Shear									
Load Combination	Vu @ -X	Vu @	+X Vu	@ -Z Vu	@ +Z V	/u:Max Phi	Vn Vu	Phi*Vn	Status
+1.40D	9.62 ps	i	9.62 psi	9.62 psi	9.62 psi	9.62 psi	75.00 psi	0.13	ОК
+1.20D+0.50Lr+1.60L	26.50 ps	i	26.50 psi	26.50 psi	26.50 psi	26.50 psi	75.00 psi	0.35	OK
+1.20D+1.60L+0.50S	26.81 ps	i	26.81 psi	26.81 psi	26.81 psi	26.81 psi	75.00 psi	0.36	OK
+1.20D+1.60Lr+L	22.74 ps	i	22.74 psi	22.74 psi	22.74 psi	22.74 psi	75.00 psi	0.30	OK
+1.20D+1.60Lr	12.07 ps	i	12.07 psi	12.07 psi	12.07 psi	12.07 psi	75.00 psi	0.16	OK
+1.20D+L+1.60S	23.71 ps	i	23.71 psi	23.71 psi	23.71 psi	23.71 psi	75.00 psi	0.32	OK
+1.20D+1.60S	13.05 ps		13.05 psi	13.05 psi	13.05 psi	13.05 psi	75.00 psi	0.17	OK
+1.20D+0.50Lr+L	20.10 ps		20.10 psi	20.10 psi	20.10 psi	20.10 psi	75.00 psi	0.27	OK
+1.20D+L+0.50S	20.41 ps		20.41 psi	20.41 psi	20.41 psi	20.41 psi	75.00 psi	0.27	ОК
+0.90D	6.18 ps		6.18 psi	6.18 psi	6.18 psi	6.18 psi	75.00 psi	0.08	OK
+1.20D+L+0.20S	19.51 ps		19.51 psi	19.51 psi	19.51 psi	19.51 psi	75.00 psi	0.26	OK
Two-Way "Punching" Shear	10.01 pc		. o.o . po.	. с.с. рс.	. о.о . ро.	. σ.σ. γσ.	. 0.00 po.	All units	
Load Combination		Vu		Phi*Vn		Vu / Phi*Vn			Status
+1.40D		41.0	00 psi	150.00p	si	0.2734			OK
+1.20D+0.50Lr+1.60L		112.9	95 psi	150.00p	si	0.753			OK
+1.20D+1.60L+0.50S		114.2	25 psi	150.00p	si	0.7617			OK
+1.20D+1.60Lr+L			90 psi	150.00p	si	0.646			OK
+1.20D+1.60Lr			46 psi	150.00p		0.3431			OK
+1.20D+L+1.60S			06 psi	150.00p		0.6737			OK
+1.20D+1.60S			62 psi	150.00 p		0.3708			OK
+1.20D+0.50Lr+L			69 psi	150.00p		0.5712			OK
+1.20D+L+0.50S			98 psi	150.00p		0.5799			OK
+0.90D			36 psi	150.00p		0.1757			OK
+1.20D+L+0.20S		83.1	15 psi	150.00p	SI	0.5543			oK

Design of 10 ft Retaining Wall

 $t_{\text{wall}} := 8 \text{in}$

Thickness of wall

 $t_{foun} := 10in$

Thickness of foundation

 $L_{toe} := 1 \text{ ft} + 10 \text{ in} = 1.833 \cdot \text{ ft}$

Total foundation length

 $h_{kev} := 0ft$

Height of key

 $t_{\text{kev}} := 0 \text{in}$

Thickness of key

 $L_{heel} := 1 ft + 6 in$

Heel length

 $t_{gr slab} := 4in$

Thickness of slab on grade on top of wall

foundation

 $h_{\text{wall}} := 10 \text{ft}$

Height of the wall

I :=
$$\frac{1}{12} \cdot \left(L_{\text{toe}} + L_{\text{heel}} + t_{\text{wall}} \right)^3 = 5.333 \cdot \frac{\text{ft}^4}{\text{ft}}$$

Moment inertia of wall base

f'_c := 2500psi

Concrete compressive strength

 $f_v := 60 \text{ksi}$

Steel yield strength

 $E_s := 29000 ksi$

Steel young modulus

 $\gamma_c := 150 \text{pcf}$

Concrete unit weight

 $p_a := 40pcf$

Active soil pressure

 $p_0 := 55pcf$

At-rest soil pressure

$$\Delta p_{eq} := 8 \left(\frac{h_{wall}}{ft} \right) \cdot psf = 80 \cdot psf$$

Seismic soil pressure

 $p_p := 200pcf$

Passive pressure

PGA := 0.607

12 of 43

 $\mu := 0.35$

Soil friction factor from IBC 2018

$$\varphi := \frac{3}{2} \cdot atan(\mu) = 28.935 \cdot deg$$

Equivalent friction angle

$$K_a := \frac{1-\sin(\varphi)}{1+\sin(\varphi)} = 0.348$$

Active pressure coefficient

$$K_0 := 1 - \sin(\phi) = 0.516$$

At-Rest pressure coefficient

$$\gamma_{\text{soil}} := \frac{p_a}{K_a} = 114.984 \cdot \text{pcf}$$

Soil unit weight

Vertical weight on wall

$$P_{d_wall} := \left(h_{wall} - t_{foun}\right) \cdot t_{wall} \cdot \gamma_c = 916.667 \cdot plf$$

$$P_{d \text{ found}} := (L_{toe} + t_{wall} + L_{heel}) \cdot t_{foun} \cdot \gamma_c = 500 \cdot plf$$

Concrete weight of foundation

$$P_{d \text{ key}} := (h_{key} - t_{foun}) \cdot t_{key} \cdot \gamma_c = 0 \cdot plf$$

Concrete weight of key

$$P_{d_slab} := t_{gr_slab} \cdot (44ft) \cdot \gamma_c + 5psf \cdot 44ft + 0.6 \left(3919 \frac{lbf}{16in} + 2092 \frac{lbf}{16in} + 1507 \frac{lbf}{16in}\right) = 5.803 \times 10^3 \cdot p$$

Concrete weight of slab and dead load on grade

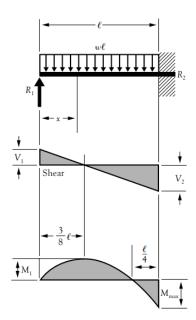
$$P_{slab.on.found} := t_{gr \ slab} \cdot \gamma_c \cdot L_{toe} = 91.667 \cdot plf$$

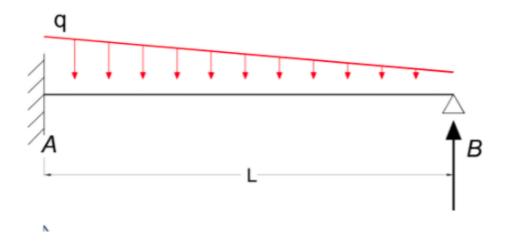
Weight of concrete slab on wall foundation

Live load on slab

$$P_{11} := 0psf \cdot (L_{toe}) = 0 \cdot plf$$

Surcharge pressure on wall due to slab on grade


$$P_{d,surch} := 0 \cdot t_{gr,slab} \cdot \gamma_c \cdot K_a = 0 \cdot psf$$


Surcharge pressure on wall due to live load on patio

$$P_{ll \ .surch} := 60psf \cdot K_a = 20.872 \cdot psf$$

Check Sliding Capacity for Dead Load

Lateral earth force from active pressure

Bending Moment

$$M_A = -q L^2 / 15$$
 (3a)

where

 M_A = moment at the fixed end (Nm, lb_f ft)

q = continuous declining load (N/m, lb_f/ft)

$$M_1 = q L^2 / 33.6 (3b)$$

where

 M_1 = maximum moment at x = 0.553 L (Nm, $lb_f ft$)

Deflection

$$\bar{\delta}_{max} = q L^4 / (419 E I)$$
(3c)

where

 \bar{o}_{max} = max deflection at x = 0.553 L (m, ft)

$$\delta_{1/2} = q L^4 / (427 E I)$$
 (3d)

where

 $\bar{o}_{1/2}$ = deflection at x = L / 2 (m, ft)

Support Reactions

$$R_{\Delta} = 2 q L / 5 \tag{3e}$$

$$R_B = q L / 10 \tag{3f}$$

$$F_{d} := \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} + 5 \cdot \frac{P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right)}{8} = 2.056 \times 10^{3} \cdot plf$$

Resisting force

$$F_{res} := P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} \dots = 8.743 \times 10^{3} \cdot plf + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$$

$$\frac{F_{\text{res}} \cdot \mu}{F_{\text{d}}} = 1.5$$

It is more than or equal 1.5

Check Sliding Capacity for Seismic

Lateral earth force from active pressure

$$\begin{split} F_{d} &:= \frac{2}{5} \cdot p_{a} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} + \frac{5}{8} \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right) \dots \\ &\quad + \frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right) + \left(\frac{P_{d_wall}}{2} + P_{d_found} + P_{d_key}\right) \cdot PGA \cdot \frac{1}{2} \\ &\quad + \frac{1}{8} \cdot \frac{1}{8} \cdot P_{d_slab} \cdot$$

$$\begin{aligned} F_{res} &\coloneqq P_{\substack{d_wall}} + P_{\substack{d_found}} + P_{\substack{d_key}} + P_{\substack{d_slab}} \dots = 8.743 \times 10^3 \cdot plf \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \end{aligned}$$

$$\frac{0.9F_{res} \cdot \mu + \frac{1}{2}p_{p} \cdot (h_{key})^{2}}{F_{d}} = 1.345$$

It is more than 1.0

Check Overturning Capacity for Dead Load

Lateral moment about toe due to soil pressure

$$\begin{split} M_{d} &\coloneqq \frac{1}{15} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} + \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} \cdot \left(h_{key}\right) \dots \\ &\quad + \frac{P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \end{split}$$

Resisting moment

$$\begin{split} M_{res} &:= P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) ... \\ &\quad + P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} ... \\ &\quad + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$\frac{M_{res}}{M_d} = 2.422$$

It is more than 1.5

Check Overturning Capacity for Seismic Load

Lateral moment about toe due to soil pressure

$$\begin{split} M_{d} &:= \frac{1}{15} \cdot p_{a} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} + \frac{2}{5} \cdot p_{a} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} \cdot \left(h_{key}\right) \dots \\ &+ \frac{P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \dots \\ &- \frac{\Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \dots \\ &+ \frac{\left[\frac{P_{d_wall}}{2} \cdot \left(\frac{h_{wall}}{2} - t_{foun}\right) + P_{d_found} \cdot \frac{t_{foun}}{2} + P_{d_key} \cdot \frac{h_{key}}{2}\right] \cdot PGA \cdot \frac{1}{2}}{1.4} \\ &+ \frac{1.4}{2} \cdot \frac{1.4}{$$

Resisting moment

$$\begin{split} M_{res} &:= P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) \dots \\ &= 8.022 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} \dots \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$\frac{0.9 \cdot M_{res}}{M_d} = 2.042$$

It is more than 1.1

Check Overturning Capacity for Dead and Live Load

Lateral moment about toe due to soil pressure

$$\begin{split} \mathbf{M_{d}} &\coloneqq \frac{1}{15} \cdot \mathbf{p_{o}} \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^{3} + \frac{2}{5} \cdot \mathbf{p_{o}} \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^{2} \cdot \left(\mathbf{h_{key}}\right) \dots \\ &\quad + \frac{\left(\mathbf{P_{d_.surch}} + \mathbf{P_{ll_.surch}}\right) \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^{2}}{8} \dots \\ &\quad + \frac{5}{8} \cdot \left(\mathbf{P_{d_.surch}} + \mathbf{P_{ll_.surch}}\right) \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right) \cdot \mathbf{h_{key}} \\ &\quad \mathbf{M_{d}} &= 3.556 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}} \end{split}$$

Resisting moment

$$\begin{split} M_{res} &:= P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) ... \\ &\quad + P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} ... \\ &\quad + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$\frac{M_{res} + \frac{1}{4}p_{p} \cdot \left(h_{key} + t_{foun} - 4in\right)^{3}}{M_{d}} = 2.258$$

It is more than 1.0

Check Soil Bearing Pressure for DL+LL

$$\begin{split} \mathbf{M}_{d} &:= \frac{1}{15} \cdot \mathbf{p}_{o} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab} \right)^{3} \dots \\ &\quad + \frac{\left(\mathbf{P}_{d_.surch} + \mathbf{P}_{ll_.surch} \right) \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab} \right)^{2}}{8} \end{split}$$

$$\begin{split} M_{res} &\coloneqq P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) \dots \\ &= 8.022 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} \dots \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$L_{base} := L_{toe} + t_{wall} + L_{heel}$$

$$P \coloneqq P_{d_wall} + P_{d_found} + P_{d_key} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)$$

$$\left| \frac{M_{res} - M_d}{P} - \frac{\left(L_{toe} + t_{wall} + L_{heel}\right)}{2} \right| = 0.481 \cdot ft$$
 Eccentricity

$$\frac{L_{\text{base}}}{6} = 0.667 \cdot \text{ft}$$

Eccentricity is within 1/3 of base so base is always in compression

$$\begin{split} \sigma_{toe} &:= \frac{P_{d_wall} + P_{d_found} + P_{d_key} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)}{L_{toe} + t_{wall} + L_{heel}} \dots \\ &+ \frac{M_{d} \cdot 0.5 \cdot L_{base}}{I} - \frac{P_{d_wall} \cdot \left(\frac{L_{base}}{2} - t_{wall} - L_{heel}\right) \cdot 0.5 L_{base}}{I} \dots \\ &+ \frac{P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} + \frac{P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} \dots \\ &+ \frac{-L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2}\right) \cdot .5 L_{base}}{I} \dots \end{split}$$

$$\sigma_{toe} = 1.449 \times 10^3 \cdot psf$$
 Less than 1500 psf OK

$$\begin{split} \sigma_{heel} &:= \frac{P_{d_wall} + P_{d_found} + P_{d_key} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)}{L_{toe} + t_{wall} + L_{heel}} \dots \\ &+ \frac{-M_d \cdot 0.5 \cdot L_{base}}{I} - \frac{-P_{d_wall} \cdot \left(\frac{L_{base}}{2} - t_{wall} - L_{heel}\right) \cdot 0.5 L_{base}}{I} \dots \\ &+ \frac{-P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} - \frac{P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} \\ &+ \frac{L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2}\right) \cdot .5 L_{base}}{I} \end{split}$$

$$\sigma_{heel} = 21.222 \cdot psf$$
 Less than 1500 psf OK

Check Soil Bearing Pressure for Seismic

$$\begin{split} M_{d} &:= \frac{1}{15} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} + \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} \cdot \left(h_{key}\right) \dots \\ &+ \frac{P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \dots \\ &- \frac{\Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \dots \\ &+ \frac{\left[\frac{P_{d_wall}}{2} \cdot \left(\frac{h_{wall}}{2} - t_{foun}\right) + P_{d_found} \cdot \frac{t_{foun}}{2} + P_{d_key} \cdot \frac{h_{key}}{2}\right] \cdot PGA \cdot \frac{1}{2}}{1.4} \\ &+ \frac{1.4}{2} - \frac{1.4}{$$

Resisting moment

$$\begin{split} M_{res} &:= P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) \dots \\ &= 8.022 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} \dots \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$P \coloneqq P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)$$

$$\mathbf{e_{cc}} \coloneqq \left| \frac{0.9 \cdot M_{res} + \frac{1}{4} \mathbf{p_p} \cdot \left(\mathbf{h_{key}} + \mathbf{t_{foun}} - 1 \, \mathrm{ft} \right)^3 - M_d}{P} - \frac{L_{base}}{2} \right| = 1.682 \cdot \mathrm{ft}$$
 Eccentricity

$$\frac{L_{base}}{2} = 2 \cdot ft$$
 The resultant is within base

Moment about centroid of foundation

$$\begin{split} M_{center} &:= M_d - P_{d_wall} \cdot \left(\frac{L_{base}}{2} - t_{wall} - L_{heel}\right) + P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2}\right) ... \\ &+ P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2}\right) - L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2}\right) \\ M_{center} &= 2.786 \cdot \frac{kip \cdot ft}{ft} \end{split}$$

Axial load on center of foundation

$$P_{center} := P_{d_wall} + P_{d_found} + P_{d_key} + P_{slab.on.found} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)$$

$$P_{center} = 3.032 \cdot \frac{kip}{ft}$$

$$\sigma_{\text{toe}} = 1.87 \times 10^3 \cdot \text{psf}$$

Maximum bearing pressure on soil due to seismic is less than 1.3x1500= 1950 psf per IBC OK

Check for Shear and Moment Capacity

Wall Shear and Moment Capacity

$$A_{s.min.wall} := 0.0018 \cdot t_{wall} \cdot 12in = 0.173 \cdot in^2$$

Provide at least #4@12

Shear Capacity ACI-318

$$\phi V_c := 0.75 \cdot 2 \cdot \sqrt{\frac{|f_c|}{psi}} \cdot psi \cdot \left(t_{wall} - 3in\right) = 4.5 \cdot \frac{kip}{ft}$$

Shear Capacity

$$\phi M_{cap_base} := 0.9 \cdot f_y \cdot 0.2 \cdot \frac{in^2}{ft} \cdot \frac{12}{8} \cdot \left(0.9 \cdot \frac{t_{wall}}{2}\right) = 4.86 \cdot \frac{kip \cdot ft}{ft}$$

Moment capacity of wall at the base #4@8"

$$\phi M_{cap_mid} := 0.9 \cdot f_y \cdot 0.2 \cdot \frac{in^2}{ft} \cdot \frac{12}{8} \cdot \left(0.9 \cdot \frac{t_{wall}}{2}\right) = 4.86 \cdot \frac{kip \cdot ft}{ft}$$

Moment capacity of wall at the middle #4@12"

$$\phi V_c = 4.5 \cdot \frac{kip}{ft}$$

Shear capacity of wall

Calculate Demand on Base of Wall (1.4DL+1.6LL+1.6EH)

$$\begin{aligned} \mathbf{M} &:= 1.6 \frac{1}{15} \cdot \mathbf{p_o} \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}} - \mathbf{t_{foun}} \right)^3 \dots \\ &\quad + \frac{\left(1.2 \cdot \mathbf{P_{d_.surch}} + 1.6 \cdot \mathbf{P_{ll_.surch}} \right) \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}} - \mathbf{t_{foun}} \right)^2}{8} \end{aligned}$$

$$M = 4.369 \cdot kip$$

$$\frac{M}{\phi M_{can base}} = 89.903 \cdot \%$$

Moment capacity is more than demand moment on wall-OK

$$\begin{split} V &:= 1.6 \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall} \right)^{2} \dots \\ &+ \frac{5}{8} \cdot \left(1.2 \cdot P_{d_.surch} + 1.6 \cdot P_{ll_.surch} \right) \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall} \right) \end{split}$$

$$V = 2.518 \cdot \frac{kip}{ft}$$

$$\frac{V}{\phi V_c} = 55.958 \cdot \%$$

Shear capacity is more than demand moment on wall-OK

Calculate Demand on Base Wall (1.2DL+1.0LL+1.6EH+1.0EQ)

$$\begin{split} M &\coloneqq 1.6\frac{1}{15} \cdot p_a \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^3 \dots \\ &\quad + \frac{1.2 \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^2}{8} \dots \\ &\quad + \frac{\Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^2}{8} \dots \\ &\quad + \left[\frac{1.2 P_{d_wall}}{2} \cdot \left(\frac{h_{wall}}{2} - t_{foun}\right)\right] \cdot \frac{PGA}{2} \end{split}$$

$$M = 4.417 \cdot kip$$

$$\frac{M}{\phi M_{\text{cap base}}} = 90.876 \cdot \%$$

OK

$$\begin{split} V &:= 1.6\frac{2}{5} \cdot p_a \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right)^2 + 1.2\frac{5}{8} \cdot P_{d_surch} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right) ... \\ &+ \frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right) + \left(\frac{1.2P_{d_wall}}{2}\right) \cdot \frac{PGA}{2} \\ &V = 2.283 \cdot \frac{kip}{ft} \end{split}$$

$$\frac{V}{\phi V_c} = 50.725 \cdot \%$$

Shear capacity is more than demand moment on wall-OK

$$A_{\text{smin.wall}} := 0.0018 \cdot t_{\text{wall}} \cdot 12 \text{in} = 0.173 \cdot \text{in}^2$$

Ok use #4@8" vertical and horizontal

Toe Foundation Shear and Moment Capacity

Toe Foundation Shear and Moment Capacity

$$A_{smin.found.L} := \frac{0.0018 \cdot t_{foun} \cdot L_{base}}{0.2 in^2} = 4.32$$

Provide 5-#4 rebar longitudinal

$$A_{smin.found.T} := \frac{0.0018 \cdot t_{foun} \cdot 10in}{0.2in^2} = 0.9$$

Provide-#4@10" rebar transverse

Designer: NKH Engineering

Shear Capacity ACI-318

$$\phi V_c := 0.75 \cdot 2 \cdot \sqrt{\frac{|f_c|}{psi}} \cdot psi \cdot (t_{foun} - 3in) = 6.3 \cdot \frac{kip}{ft}$$

Shear Capacity

 $\phi M_{cap} := 0.9 \cdot f_y \cdot \left(0.2 \frac{in^2}{ft} \cdot \frac{12}{10} \right) \cdot \left(0.9 \cdot \frac{t_{foun}}{2} \right) = 4.86 \cdot \frac{kip \cdot ft}{ft}$

Moment capacity of wall

$$\Phi V_{c} = 6.3 \cdot \frac{kip}{ft}$$

Shear capacity of wall

Calculate demand on toe under soil pressure (1.2DL+1.6LL+1.6EH)

Moment about centroid of foundation

$$\begin{aligned} \mathbf{M_d} &\coloneqq 1.6\frac{1}{15} \cdot \mathbf{p_o} \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^3 \dots \\ &\quad + \frac{\left(1.2 \cdot \mathbf{P_{d_.surch}} + 1.6 \cdot \mathbf{P_{ll_.surch}}\right) \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^2}{8} \end{aligned}$$

$$\begin{split} M_{center} &:= M_d - 1.2 P_{d_wall} \cdot \left(\frac{L_{base}}{2} - t_{wall} - L_{heel}\right) + 1.2 P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2}\right) \dots \\ &+ 1.2 \cdot P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2}\right) \dots \\ &+ -1.2 L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2}\right) \\ &M_{center} = 3.707 \cdot kip \end{split}$$

Axial load on center of foundation

$$\begin{split} P_{center} &:= 1.2 P_{d_wall} + 1.2 P_{d_found} + 1.2 P_{d_key} + 1.2 \cdot P_{slab.on.found} \cdots \\ &\quad + 1.6 L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr\ slab} - t_{foun}\right) \end{split}$$

$$\begin{aligned} P_{center} &= 4.248 \cdot \frac{kip}{ft} \\ \frac{max(\left|M_{toe}\right|, \left|M_{heel}\right|)}{\phi M_{cap}} &= 71.163 \cdot \% \\ \frac{max(\left|V_{toe}\right|, \left|V_{heel}\right|)}{\phi V_{c}} &= 33.976 \cdot \% \end{aligned}$$

Moment about centroid of foundation

$$\begin{split} \mathbf{M}_{d} &\coloneqq 1.6\frac{1}{15} \cdot \mathbf{p}_{a} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{3} \dots \\ &+ \frac{1.2 \cdot \mathbf{P}_{d_.surch} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2}}{8} \dots \\ &+ \frac{\Delta \mathbf{p}_{eq} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2}}{8} \dots \\ &+ \left[\frac{1.2 \mathbf{P}_{d_wall}}{2} \cdot \left(\frac{\mathbf{h}_{wall}}{2}\right)\right] \cdot \mathbf{PGA} \end{split}$$

$$\begin{split} \text{M}_{center} \coloneqq \text{M}_{d} - 1.2 \text{P}_{d_wall} \cdot & \left(\frac{L_{base}}{2} - t_{wall} - L_{heel} \right) + 1.2 \text{P}_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2} \right) \dots \\ & + 1.2 \cdot \text{P}_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2} \right) \dots \\ & + -1.0 L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{M_{center}} \right) \end{split}$$

Axial load on center of foundation

$$\begin{split} P_{center} &:= 1.2 P_{d_wall} + 1.2 P_{d_found} + 1.2 P_{d_key} + 1.2 \cdot P_{slab.on.found} ... \\ &+ 1.6 L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \end{split}$$

$$P_{center} = 4.248 \cdot \frac{kip}{ft}$$

$$\frac{\max(|M_{toe}|, |M_{heel}|)}{\phi M_{cap}} = 87.114.\%$$

$$\frac{\max\left(\left|M_{toe}\right|,\left|M_{heel}\right|\right)}{\varphi M_{cap}} = 87.114 \cdot \% \qquad \frac{\max\left(\left|V_{toe}\right|,\left|V_{heel}\right|\right)}{\varphi V_{c}} = 42.256 \cdot \% \quad \text{OK}$$

It is less than 5% Over EOR is OK

Design of 7 ft Retaining Wall

 $t_{\text{wall}} := 8in$

Thickness of wall

 $t_{foun} := 10in$

Thickness of foundation

 $L_{toe} := 1 \text{ ft} + 4 \text{ in} = 1.333 \cdot \text{ ft}$

Total foundation length

 $h_{\text{kev}} := 0 \text{ft}$

Height of key

 $t_{\text{key}} := 0 \text{in}$

Thickness of key

 $L_{heel} := 1ft$

Heel length

 $t_{gr slab} := 4in$

Thickness of slab on grade on top of wall

foundation

 $h_{\text{wall}} := 7 \text{ft}$

Height of the wall

$$I := \frac{1}{12} \cdot \left(L_{toe} + L_{heel} + t_{wall} \right)^3 = 2.25 \cdot \frac{\text{ft}^4}{\text{ft}}$$

Moment inertia of wall base

 $f_c := 2500 psi$

Concrete compressive strength

 $f_v := 60 \text{ksi}$

Steel yield strength

 $E_s := 29000 ksi$

Steel young modulus

 $\gamma_c := 150 pcf$

Concrete unit weight

 $p_a := 40pcf$

Active soil pressure

 $p_0 := 55pcf$

At-rest soil pressure

$$\Delta p_{eq} := 8 \left(\frac{h_{wall}}{ft} \right) \cdot psf = 56 \cdot psf$$

Seismic soil pressure

 $p_p := 200pcf$

Passive pressure

PGA := 0.607

 $\mu := 0.35$

Soil friction factor from IBC 2018

 $\phi := \frac{3}{2} \cdot \operatorname{atan}(\mu) = 28.935 \cdot \deg$

Equivalent friction angle

$$K_a := \frac{1 - \sin(\phi)}{1 + \sin(\phi)} = 0.348$$

Active pressure coefficient

$$K_0 := 1 - \sin(\phi) = 0.516$$

At-Rest pressure coefficient

$$\gamma_{\text{soil}} := \frac{p_a}{K_a} = 114.984 \cdot \text{pcf}$$

Soil unit weight

Vertical weight on wall

$$P_{d_wall} := \left(h_{wall} - t_{foun}\right) \cdot t_{wall} \cdot \gamma_c = 616.667 \cdot plf$$

$$P_{d_found} := (L_{toe} + t_{wall} + L_{heel}) \cdot t_{foun} \cdot \gamma_c = 375 \cdot plf$$

Concrete weight of foundation

$$P_{d \text{ key}} := (h_{key} - t_{foun}) \cdot t_{key} \cdot \gamma_c = 0 \cdot plf$$

Concrete weight of key

$$P_{d\ slab} := t_{gr\ slab} \cdot (44ft) \cdot \gamma_c + 5psf \cdot 44ft = 2.42 \times 10^3 \cdot plf$$

Concrete weight of slab and dead load on grade

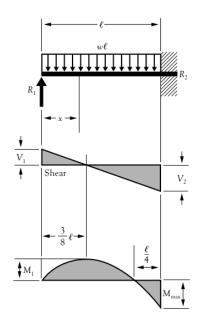
 $P_{slab.on.found} := t_{gr_slab} \cdot \gamma_c \cdot L_{toe} = 66.667 \cdot plf$

Weight of concrete slab on wall foundation

Live load on slab

$$P_{ll} := 0psf \cdot (L_{toe}) = 0 \cdot plf$$

Surcharge pressure on wall due to slab on grade


$$P_{d : surch} := 0 \cdot t_{gr : slab} \cdot \gamma_c \cdot K_a = 0 \cdot psf$$

Surcharge pressure on wall due to live load on patio

$$P_{ll \ .surch} := 60psf \cdot K_a = 20.872 \cdot psf$$

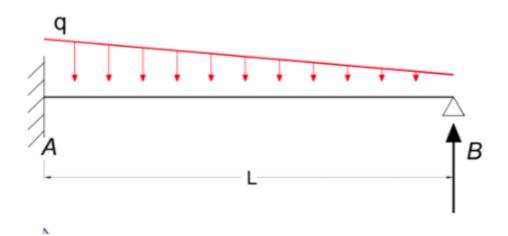
Check Sliding Capacity for Dead Load

Lateral earth force from active pressure

$$R_{1} = V_{1} \qquad \qquad = \frac{3w\ell}{8}$$

$$R_{2} = V_{2} \qquad \qquad = \frac{5w\ell}{8}$$

$$V_{x} \qquad \qquad = R_{1} - wx$$


$$M_{max} \qquad \qquad = \frac{w\ell^{2}}{8}$$

$$M_{1} \left(\text{at } x = \frac{3}{8} \ell \right) \qquad \qquad = \frac{9}{128} w\ell^{2}$$

$$M_{x} \qquad \qquad = R_{1}x - \frac{wx^{2}}{2}$$

$$\Delta_{max} \left(\text{at } x = \frac{\ell}{16} (1 + \sqrt{33}) = .4215 \ell \right) \qquad = \frac{w\ell^{4}}{185EI}$$

$$\Delta_{x} \qquad \qquad = \frac{wx}{48EI} (\ell^{3} - 3\ell x^{2} + 2x^{3})$$

Bending Moment

$$M_A = -q L^2 / 15$$
 (3a)

where

 M_A = moment at the fixed end (Nm, lb_f ft)

q = continuous declining load (N/m, Ib_#/ft)

$$M_1 = q L^2 / 33.6 (3b)$$

where

 M_1 = maximum moment at x = 0.553 L (Nm, lb_f ft)

Deflection

$$\delta_{max} = q L^4 / (419 E I)$$
(3c)

where

 δ_{max} = max deflection at x = 0.553 L (m, ft)

$$\delta_{1/2} = q L^4 / (427 E I)$$
(3d)

where

 $\delta_{1/2}$ = deflection at x = L/2 (m, ft)

Support Reactions

$$R_{\Delta} = 2 q L / 5 \tag{3e}$$

$$R_B = q L / 10 \tag{3f}$$

$$F_{d} := \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} + 5 \cdot \frac{P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right)}{8} = 977.778 \cdot plf$$

Resisting force

$$F_{res} := P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} \dots = 4.082 \times 10^{3} \cdot plf + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$$

$$\frac{F_{\text{res}} \cdot \mu}{F_d} = 1.5$$

It is more than or equal 1.5

Check Sliding Capacity for Seismic Load

Lateral earth force from active pressure

$$\begin{split} F_d &\coloneqq \frac{2}{5} \cdot p_a \cdot \left(h_{wall} - t_{gr_slab} \right)^2 + \frac{5}{8} \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab} \right) \dots \\ &\quad + \frac{\frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab} \right) + \left(\frac{P_{d_wall}}{2} + P_{d_found} + P_{d_key} \right) \cdot PGA \cdot \frac{1}{2}}{1.4} \\ &\quad + \frac{1}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab} \right) + \left(\frac{P_{d_wall}}{2} + P_{d_found} + P_{d_key} \right) \cdot PGA \cdot \frac{1}{2}}{1.4} \end{split}$$

$$F_{res} := P_{d_wall} + P_{d_found} + P_{d_key} + P_{d_slab} \dots = 4.082 \times 10^{3} \cdot plf + L_{heel} \cdot \gamma_{soil} \cdot (h_{wall} - t_{gr_slab} - t_{foun})$$

$$\frac{0.9F_{\text{res}} \cdot \mu + \frac{1}{2}p_{\text{p}} \cdot (h_{\text{key}})^{2}}{F_{\text{d}}} = 1.253$$

It is more than 1.0

Check Overturning Capacity for Dead Load

Lateral moment about toe due to soil pressure

$$\begin{split} M_{d} &\coloneqq \frac{1}{15} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} + \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} \cdot \left(h_{key}\right) \dots \\ &\quad + \frac{P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \end{split}$$

Resisting moment

$$\begin{split} M_{res} &:= P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) \dots \\ &= 3.312 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} \dots \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$\frac{M_{res}}{M_d} = 3.048$$

It is more than 1.5

Check Overturning Capacity for Seismic Load

Lateral moment about toe due to soil pressure

$$\begin{split} M_{d} &\coloneqq \frac{1}{15} \cdot p_{a} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} + \frac{2}{5} \cdot p_{a} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} \cdot \left(h_{key}\right) \dots \\ &+ \frac{P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \dots \\ &- \frac{\Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \dots \\ &+ \frac{\left[\frac{P_{d_wall}}{2} \cdot \left(\frac{h_{wall}}{2} - t_{foun}\right) + P_{d_found} \cdot \frac{t_{foun}}{2} + P_{d_key} \cdot \frac{h_{key}}{2}\right] \cdot PGA \cdot \frac{1}{2}}{1.4} \\ &+ \frac{1.224 \cdot \frac{kip \cdot ft}{ft}}{1.4} \end{split}$$

Resisting moment

$$\begin{split} M_{res} &\coloneqq P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) ... &= 3.312 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} ... \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$\frac{0.9 \cdot M_{res}}{M_d} = 2.434$$

It is more than 1.1

Check Overturning Capacity for Dead and Live Load

Lateral moment about toe due to soil pressure

$$\begin{split} \mathbf{M}_{d} &:= \frac{1}{15} \cdot \mathbf{p_{o}} \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^{3} + \frac{2}{5} \cdot \mathbf{p_{o}} \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^{2} \cdot \left(\mathbf{h_{key}}\right) \dots \\ &+ \frac{\left(\mathbf{P_{d_.surch}} + \mathbf{P_{ll_.surch}}\right) \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^{2}}{8} \dots \\ &+ \frac{5}{8} \cdot \left(\mathbf{P_{d_.surch}} + \mathbf{P_{ll_.surch}}\right) \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right) \cdot \mathbf{h_{key}} \\ & \mathbf{M_{d}} = 1.202 \cdot \frac{\mathbf{kip} \cdot \mathbf{ft}}{\mathbf{ft}} \end{split}$$

Resisting moment

$$\begin{split} M_{res} &:= P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) \dots \\ &= 3.312 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} \dots \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$\frac{M_{\text{res}} + \frac{1}{4}p_{p} \cdot (h_{\text{key}} + t_{\text{foun}} - 4\text{in})^{3}}{M_{\text{d}}} = 2.759$$

It is more than 1.0

Check Soil Bearing Pressure for DL+LL

$$\begin{split} \mathbf{M}_{d} &\coloneqq \frac{1}{15} \cdot \mathbf{p}_{o} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab} \right)^{3} \; ... \\ &\quad + \frac{\left(\mathbf{P}_{d_.surch} + \mathbf{P}_{ll_.surch} \right) \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab} \right)^{2}}{8} \end{split}$$

$$\begin{split} M_{res} &:= P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) ... &= 3.312 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} ... \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$L_{base} := L_{toe} + t_{wall} + L_{heel}$$

$$P \coloneqq P_{d_wall} + P_{d_found} + P_{d_key} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)$$

$$\left| \frac{M_{res} - M_d}{P} - \frac{\left(L_{toe} + t_{wall} + L_{heel}\right)}{2} \right| = 0.231 \cdot ft$$
 Eccentricity

$$\frac{L_{\text{base}}}{6} = 0.5 \cdot \text{ft}$$

Eccentricity is within 1/3 of base so base is always in compression

$$\begin{split} \sigma_{toe} \coloneqq & \frac{P_{d_wall} + P_{d_found} + P_{d_key} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)}{L_{toe} + t_{wall} + L_{heel}} \dots \\ & + \frac{M_{d} \cdot 0.5 \cdot L_{base}}{I} - \frac{P_{d_wall} \cdot \left(\frac{L_{base}}{2} - t_{wall} - L_{heel}\right) \cdot 0.5 L_{base}}{I} \dots \\ & + \frac{P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} + \frac{P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} \dots \\ & + \frac{-L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2}\right) \cdot .5 L_{base}}{I} \end{split}$$

$$\sigma_{toe} = 1.014 \times 10^3 \cdot psf$$
 Less than 2500 psf OK

$$\begin{split} \sigma_{heel} &:= \frac{P_{d_wall} + P_{d_found} + P_{d_key} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)}{L_{toe} + t_{wall} + L_{heel}} \dots \\ &+ \frac{-M_{d} \cdot 0.5 \cdot L_{base}}{I} - \frac{-P_{d_wall} \cdot \left(\frac{L_{base}}{2} - t_{wall} - L_{heel}\right) \cdot 0.5 L_{base}}{I} \dots \\ &+ \frac{-P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} - \frac{P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2}\right) \cdot \left(0.5 L_{base}\right)}{I} \dots \\ &+ \frac{L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2}\right) \cdot .5 L_{base}}{I} \dots \end{split}$$

$$\sigma_{heel} = 94.156 \cdot psf$$
 Less than 2000 psf

Check Soil Bearing Pressure for Seismic

$$\begin{split} M_{d} &:= \frac{1}{15} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{3} + \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2} \cdot \left(h_{key}\right) \dots \\ &+ \frac{P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \dots \\ &- \frac{\Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right)^{2}}{8} + \frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab}\right) \cdot h_{key} \dots \\ &+ \frac{\left[\frac{P_{d_wall}}{2} \cdot \left(\frac{h_{wall}}{2} - t_{foun}\right) + P_{d_found} \cdot \frac{t_{foun}}{2} + P_{d_key} \cdot \frac{h_{key}}{2}\right] \cdot PGA \cdot \frac{1}{2}}{1.4} \\ &+ \frac{1.4}{2} \cdot \frac{h_{d} \cdot p_{eq} \cdot h_{d} \cdot p_{eq} \cdot h_{d} \cdot p_{d} \cdot p_{eq} \cdot h_{d} \cdot p_{eq} \cdot h_{eq} \cdot h_{eq$$

Resisting moment

$$\begin{split} M_{res} &:= P_{d_wall} \cdot \left(L_{toe} + \frac{t_{wall}}{2} \right) + P_{d_found} \cdot \left(\frac{L_{toe} + t_{wall} + L_{heel}}{2} \right) ... &= 3.312 \cdot \frac{kip \cdot ft}{ft} \\ &+ P_{d_key} \cdot \frac{t_{key}}{2} + P_{slab.on.found} \cdot \frac{L_{toe}}{2} ... \\ &+ L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{heel}}{2} + t_{wall} + L_{toe} \right) \end{split}$$

$$P := P_{d \ wall} + P_{d \ found} + P_{d \ key} + P_{d \ slab} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr \ slab} - t_{foun}\right)$$

$$e_{cc} \coloneqq \left| \frac{0.9 \cdot M_{res} + \frac{1}{4} p_p \cdot \left(h_{key} + t_{foun} - 1 \, \text{ft} \right)^3 - M_d}{P} - \frac{L_{base}}{2} \right| = 1.143 \cdot \text{ft}$$
 Eccentricity

$$\frac{L_{base}}{2} = 1.5 \cdot ft$$
 The resultant is within base

Moment about centroid of foundation

$$\begin{split} M_{center} \coloneqq M_d - P_{d_wall} \cdot & \left(\frac{L_{base}}{2} - t_{wall} - L_{heel} \right) + P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2} \right) ... \\ & + P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2} \right) - L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2} \right) \end{split}$$

$$M_{center} = 1.008 \cdot \frac{\text{kip} \cdot \text{ft}}{\text{ft}}$$

Axial load on center of foundation

$$\begin{aligned} P_{center} &\coloneqq P_{d_wall} + P_{d_found} + P_{d_key} + P_{slab.on.found} + L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \\ P_{center} &= 1.729 \cdot \frac{kip}{ft} \end{aligned}$$

$$\sigma_{\text{toe}} = 1.257 \times 10^3 \cdot \text{psf}$$

Maximum bearing pressure on soil due to seismic is less than 1.3x1500=1950 psf per IBC OK

Wall Shear and Moment Capacity

$$A_{s.min.wall} := 0.0018 \cdot t_{wall} \cdot 12in = 0.173 \cdot in^2$$

Provide at least #4@12

Shear Capacity ACI-318

$$\phi V_c := 0.75 \cdot 2 \cdot \sqrt{\frac{\left| f_c \right|}{psi}} \cdot psi \cdot \left(t_{wall} - 3in \right) = 4.5 \cdot \frac{kip}{ft}$$

Shear Capacity

$$\phi M_{cap_base} := 0.9 \cdot f_y \cdot 0.2 \cdot \frac{in^2}{ft} \cdot \frac{12}{12} \cdot \left(0.9 \cdot \frac{t_{wall}}{2}\right) = 3.24 \cdot \frac{kip \cdot ft}{ft}$$

Moment capacity of wall at the base #4@12"

$$\phi M_{\mbox{\footnotesize cap_mid}} := 0.9 \cdot f_{\mbox{\footnotesize y}} \cdot 0.2 \, \frac{\mbox{\footnotesize in}^2}{\mbox{\footnotesize ft}} \cdot \frac{12}{12} \cdot \left(0.9 \cdot \frac{t_{\mbox{\footnotesize wall}}}{2} \right) = 3.24 \cdot \frac{\mbox{\footnotesize kip} \cdot \mbox{\footnotesize ft}}{\mbox{\footnotesize ft}}$$

Moment capacity of wall at the middle #4@12"

$$\phi V_c = 4.5 \cdot \frac{kip}{ft}$$

Shear capacity of wall

Calculate Demand on Base of Wall (1.4DL+1.6LL+1.6EH)

$$\begin{aligned} \mathbf{M} &:= 1.6 \frac{1}{15} \cdot \mathbf{p_o} \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}} - \mathbf{t_{foun}} \right)^3 \dots \\ &\quad + \frac{\left(1.2 \cdot \mathbf{P_{d_surch}} + 1.6 \cdot \mathbf{P_{ll_surch}} \right) \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}} - \mathbf{t_{foun}} \right)^2}{8} \end{aligned}$$

$$M = 1.307 \cdot kip$$

$$\frac{M}{\phi M_{\text{cap_base}}} = 40.326 \cdot \%$$

Moment capacity is more than demand moment on wall-OK

$$\begin{split} V &:= 1.6 \frac{2}{5} \cdot p_{o} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right)^{2} \dots \\ &+ \frac{5}{8} \cdot \left(1.2 \cdot P_{d_.surch} + 1.6 \cdot P_{ll_.surch}\right) \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right) \end{split}$$

$$V = 1.047 \cdot \frac{kip}{ft}$$

$$\frac{V}{\Phi V_c} = 23.277 \cdot \%$$

Shear capacity is more than demand moment on wall-OK

Calculate Demand on Base Wall (1.2DL+1.0LL+1.6EH+1.0EQ)

$$\begin{split} M &\coloneqq 1.6\frac{1}{15} \cdot p_a \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^3 \dots \\ &\quad + \frac{1.2 \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^2}{8} \dots \\ &\quad + \frac{\Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right)^2}{8} \dots \\ &\quad + \left[\frac{1.2 P_{d_wall}}{2} \cdot \left(\frac{h_{wall}}{2} - t_{foun}\right)\right] \cdot \frac{PGA}{2} \end{split}$$

$$M = 1.385 \cdot kip$$

$$\frac{M}{\phi M_{\text{cap base}}} = 42.733.\%$$

OK

$$\begin{split} V &:= 1.6\frac{2}{5} \cdot p_a \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right)^2 + 1.2\frac{5}{8} \cdot P_{d_.surch} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right) ... \\ &+ \frac{5}{8} \cdot \Delta p_{eq} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} - t_{wall}\right) + \left(\frac{1.2P_{d_wall}}{2}\right) \cdot \frac{PGA}{2} \\ &V = 0.977 \cdot \frac{kip}{ft} \end{split}$$

 $\frac{V}{\Phi V_C} = 21.7 \cdot \%$

Shear capacity is more than demand moment on wall-OK

 $A_{smin.wall} := 0.0018 \cdot t_{wall} \cdot 12in = 0.173 \cdot in^2$

Ok use #4@12" vertical and horizontal

Toe Foundation Shear and Moment Capacity

Toe Foundation Shear and Moment Capacity

$$A_{smin.found.L} := \frac{0.0018 \cdot t_{foun} \cdot L_{base}}{0.2 in^2} = 3.24$$

Provide 4-#4 rebar longitudinal

$$A_{smin.found.T} := \frac{0.0018 \cdot t_{foun} \cdot 10in}{0.2in^2} = 0.9$$

Provide-#4@10" rebar transverse

Designer: NKH Engineering

Shear Capacity ACI-318

$$\phi V_c := 0.75 \cdot 2 \cdot \sqrt{\frac{\left|f_c\right|}{psi}} \cdot psi \cdot \left(t_{foun} - 3in\right) = 6.3 \cdot \frac{kip}{ft}$$

Shear Capacity

Moment capacity of wall

$$\phi M_{cap} := 0.9 \cdot f_y \cdot \left(0.2 \frac{in^2}{ft} \cdot \frac{12}{10}\right) \cdot \left(0.9 \cdot \frac{t_{foun}}{2}\right) = 4.86 \cdot \frac{kip \cdot ft}{ft}$$

$$\phi V_c = 6.3 \cdot \frac{kip}{ft}$$

Shear capacity of wall

Calculate demand on toe under soil pressure (1.2DL+1.6LL+1.6EH)

Moment about centroid of foundation

$$\begin{aligned} \mathbf{M_{d}} &\coloneqq 1.6\frac{1}{15} \cdot \mathbf{p_{o}} \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^{3} \dots \\ &\quad + \frac{\left(1.2 \cdot \mathbf{P_{d_.surch}} + 1.6 \cdot \mathbf{P_{ll_.surch}}\right) \cdot \left(\mathbf{h_{wall}} - \mathbf{t_{gr_slab}}\right)^{2}}{8} \end{aligned}$$

$$\begin{split} M_{center} &:= M_d - 1.2 P_{d_wall} \cdot \left(\frac{L_{base}}{2} - t_{wall} - L_{heel}\right) + 1.2 P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2}\right) ... \\ &+ 1.2 \cdot P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2}\right) ... \\ &+ -1.2 L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{2}\right) \\ & M_{center} = 1.309 \cdot kip \end{split}$$

Axial load on center of foundation

$$\begin{split} P_{center} \coloneqq 1.2 P_{d_wall} + 1.2 P_{d_found} + 1.2 P_{d_key} + 1.2 \cdot P_{slab.on.found} & \cdots \\ & + 1.6 L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \end{split}$$

$$P_{center} = 2.343 \cdot \frac{kip}{ft}$$

$$\frac{\max(|M_{toe}|, |M_{heel}|)}{\phi M_{cap}} = 25.573.\%$$

$$\frac{\max(\left|M_{toe}\right|,\left|M_{heel}\right|)}{\phi M_{can}} = 25.573 \cdot \%$$

$$\frac{\max(\left|V_{toe}\right|,\left|V_{heel}\right|)}{\phi V_{c}} = 12.004 \cdot \%$$

Calculate demand on toe under soil pressure (1.2DL+1.0LL+1.6EH+1.0EQ)

Moment about centroid of foundation

$$\begin{split} \mathbf{M}_{d} &:= 1.6 \frac{1}{15} \cdot \mathbf{p}_{a} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{3} \dots \\ &+ \frac{1.2 \cdot \mathbf{P}_{d_.surch} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2}}{8} \dots \\ &+ \frac{\Delta \mathbf{p}_{eq} \cdot \left(\mathbf{h}_{wall} - \mathbf{t}_{gr_slab}\right)^{2}}{8} \dots \\ &+ \left[\frac{1.2 \mathbf{P}_{d_wall}}{2} \cdot \left(\frac{\mathbf{h}_{wall}}{2}\right)\right] \cdot \mathbf{PGA} \end{split}$$

$$\begin{split} M_{center} \coloneqq M_d - 1.2 P_{d_wall} \cdot & \left(\frac{L_{base}}{2} - t_{wall} - L_{heel} \right) + 1.2 P_{d_key} \cdot \left(\frac{L_{base}}{2} - \frac{t_{key}}{2} \right) \dots \\ & + 1.2 \cdot P_{slab.on.found} \cdot \left(\frac{L_{base}}{2} - \frac{L_{toe}}{2} \right) \dots \\ & + -1.0 L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun} \right) \cdot \left(\frac{L_{base}}{2} - \frac{L_{heel}}{M_{center}} \right) \end{split}$$

Axial load on center of foundation

$$\begin{split} P_{center} &\coloneqq 1.2 P_{d_wall} + 1.2 P_{d_found} + 1.2 P_{d_key} + 1.2 \cdot P_{slab.on.found} \cdots \\ &\quad + 1.6 L_{heel} \cdot \gamma_{soil} \cdot \left(h_{wall} - t_{gr_slab} - t_{foun}\right) \end{split}$$

$$P_{center} = 2.343 \cdot \frac{kip}{ft}$$

$$\frac{\max(|M_{\text{toe}}|, |M_{\text{heel}}|)}{\phi M_{\text{cap}}} = 32.265 \cdot \%$$

$$\frac{\max\left(\left|M_{toe}\right|,\left|M_{heel}\right|\right)}{\phi M_{cap}} = 32.265 \cdot \% \qquad \frac{\max\left(\left|V_{toe}\right|,\left|V_{heel}\right|\right)}{\phi V_{c}} = 15.653 \cdot \% \quad \text{OK}$$